Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mopickr Structured version   Visualization version   GIF version

Theorem mopickr 38319
Description: "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 (pm2.21 123) and *14.26 (eupickbi 2639) from [WhiteheadRussell] p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024.) (Proof modification is discouraged.)
Assertion
Ref Expression
mopickr ((∃*𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜓𝜑))

Proof of Theorem mopickr
StepHypRef Expression
1 exancom 1860 . . 3 (∃𝑥(𝜑𝜓) ↔ ∃𝑥(𝜓𝜑))
2 moeu2 38318 . . . 4 (∃*𝑥𝜓 ↔ (¬ ∃𝑥𝜓 ∨ ∃!𝑥𝜓))
3 19.8a 2182 . . . . . . . 8 (𝜓 → ∃𝑥𝜓)
43con3i 154 . . . . . . 7 (¬ ∃𝑥𝜓 → ¬ 𝜓)
5 pm2.21 123 . . . . . . 7 𝜓 → (𝜓𝜑))
64, 5syl 17 . . . . . 6 (¬ ∃𝑥𝜓 → (𝜓𝜑))
76a1d 25 . . . . 5 (¬ ∃𝑥𝜓 → (∃𝑥(𝜓𝜑) → (𝜓𝜑)))
8 eupickbi 2639 . . . . . 6 (∃!𝑥𝜓 → (∃𝑥(𝜓𝜑) ↔ ∀𝑥(𝜓𝜑)))
9 sp 2184 . . . . . 6 (∀𝑥(𝜓𝜑) → (𝜓𝜑))
108, 9biimtrdi 253 . . . . 5 (∃!𝑥𝜓 → (∃𝑥(𝜓𝜑) → (𝜓𝜑)))
117, 10jaoi 856 . . . 4 ((¬ ∃𝑥𝜓 ∨ ∃!𝑥𝜓) → (∃𝑥(𝜓𝜑) → (𝜓𝜑)))
122, 11sylbi 217 . . 3 (∃*𝑥𝜓 → (∃𝑥(𝜓𝜑) → (𝜓𝜑)))
131, 12biimtrid 242 . 2 (∃*𝑥𝜓 → (∃𝑥(𝜑𝜓) → (𝜓𝜑)))
1413imp 406 1 ((∃*𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  wal 1535  wex 1777  ∃*wmo 2541  ∃!weu 2571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator