MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexexv Structured version   Visualization version   GIF version

Theorem moexexv 2642
Description: "At most one" double quantification. Usage of this theorem is discouraged because it depends on ax-13 2380. Use the weaker moexexvw 2631 when possible. (Contributed by NM, 26-Jan-1997.) (New usage is discouraged.)
Assertion
Ref Expression
moexexv ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Distinct variable group:   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem moexexv
StepHypRef Expression
1 nfv 1913 . 2 𝑦𝜑
21moexex 2641 1 ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wex 1777  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator