MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexex Structured version   Visualization version   GIF version

Theorem moexex 2640
Description: "At most one" double quantification. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the version moexexvw 2630 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 28-Dec-2018.) Factor out common proof lines with moexexvw 2630. (Revised by Wolf Lammen, 2-Oct-2023.) (New usage is discouraged.)
Hypothesis
Ref Expression
moexex.1 𝑦𝜑
Assertion
Ref Expression
moexex ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))

Proof of Theorem moexex
StepHypRef Expression
1 moexex.1 . 2 𝑦𝜑
21nfmo 2562 . 2 𝑦∃*𝑥𝜑
3 nfe1 2147 . . 3 𝑥𝑥(𝜑𝜓)
43nfmo 2562 . 2 𝑥∃*𝑦𝑥(𝜑𝜓)
51, 2, 4moexexlem 2628 1 ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537  wex 1782  wnf 1786  ∃*wmo 2538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540
This theorem is referenced by:  moexexv  2641  2moswap  2646
  Copyright terms: Public domain W3C validator