![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2moex | Structured version Visualization version GIF version |
Description: Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker 2moexv 2625 when possible. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2moex | ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2148 | . . 3 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
2 | 1 | nfmo 2560 | . 2 ⊢ Ⅎ𝑦∃*𝑥∃𝑦𝜑 |
3 | 19.8a 2179 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
4 | 3 | moimi 2543 | . 2 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
5 | 2, 4 | alrimi 2211 | 1 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∃wex 1776 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-mo 2538 |
This theorem is referenced by: 2eu2 2651 |
Copyright terms: Public domain | W3C validator |