MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moex Structured version   Visualization version   GIF version

Theorem 2moex 2637
Description: Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 2374. Use the weaker 2moexv 2624 when possible. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.)
Assertion
Ref Expression
2moex (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)

Proof of Theorem 2moex
StepHypRef Expression
1 nfe1 2155 . . 3 𝑦𝑦𝜑
21nfmo 2559 . 2 𝑦∃*𝑥𝑦𝜑
3 19.8a 2186 . . 3 (𝜑 → ∃𝑦𝜑)
43moimi 2542 . 2 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
52, 4alrimi 2218 1 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wex 1780  ∃*wmo 2535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-10 2146  ax-11 2162  ax-12 2182  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-mo 2537
This theorem is referenced by:  2eu2  2650
  Copyright terms: Public domain W3C validator