Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2moex | Structured version Visualization version GIF version |
Description: Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2moexv 2629 when possible. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2moex | ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 2147 | . . 3 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
2 | 1 | nfmo 2562 | . 2 ⊢ Ⅎ𝑦∃*𝑥∃𝑦𝜑 |
3 | 19.8a 2174 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
4 | 3 | moimi 2545 | . 2 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
5 | 2, 4 | alrimi 2206 | 1 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-mo 2540 |
This theorem is referenced by: 2eu2 2654 |
Copyright terms: Public domain | W3C validator |