MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2moex Structured version   Visualization version   GIF version

Theorem 2moex 2628
Description: Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 2363. Use the weaker 2moexv 2615 when possible. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.)
Assertion
Ref Expression
2moex (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)

Proof of Theorem 2moex
StepHypRef Expression
1 nfe1 2139 . . 3 𝑦𝑦𝜑
21nfmo 2548 . 2 𝑦∃*𝑥𝑦𝜑
3 19.8a 2166 . . 3 (𝜑 → ∃𝑦𝜑)
43moimi 2531 . 2 (∃*𝑥𝑦𝜑 → ∃*𝑥𝜑)
52, 4alrimi 2198 1 (∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wex 1773  ∃*wmo 2524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2163  ax-13 2363
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-mo 2526
This theorem is referenced by:  2eu2  2640
  Copyright terms: Public domain W3C validator