| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2moex | Structured version Visualization version GIF version | ||
| Description: Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2moexv 2622 when possible. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 2moex | ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 2153 | . . 3 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 2 | 1 | nfmo 2557 | . 2 ⊢ Ⅎ𝑦∃*𝑥∃𝑦𝜑 |
| 3 | 19.8a 2184 | . . 3 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 4 | 3 | moimi 2540 | . 2 ⊢ (∃*𝑥∃𝑦𝜑 → ∃*𝑥𝜑) |
| 5 | 2, 4 | alrimi 2216 | 1 ⊢ (∃*𝑥∃𝑦𝜑 → ∀𝑦∃*𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 ∃wex 1780 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 |
| This theorem is referenced by: 2eu2 2648 |
| Copyright terms: Public domain | W3C validator |