MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moexexvw Structured version   Visualization version   GIF version

Theorem moexexvw 2685
Description: Version of moexexv 2696 with an additional disjoint variable condition, which does not require ax-13 2346. (Contributed by Gino Giotto, 22-Aug-2023.) Factor out common proof lines with moexex 2695. (Revised by Wolf Lammen, 2-Oct-2023.)
Assertion
Ref Expression
moexexvw ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)

Proof of Theorem moexexvw
StepHypRef Expression
1 nfv 1896 . 2 𝑦𝜑
2 nfv 1896 . 2 𝑦∃*𝑥𝜑
3 nfe1 2122 . . 3 𝑥𝑥(𝜑𝜓)
43nfmov 2602 . 2 𝑥∃*𝑦𝑥(𝜑𝜓)
51, 2, 4moexexlem 2683 1 ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1523  wex 1765  ∃*wmo 2576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-10 2114  ax-11 2128  ax-12 2143
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578
This theorem is referenced by:  mosub  3645
  Copyright terms: Public domain W3C validator