![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moexexvw | Structured version Visualization version GIF version |
Description: Version of moexexv 2696 with an additional disjoint variable condition, which does not require ax-13 2346. (Contributed by Gino Giotto, 22-Aug-2023.) Factor out common proof lines with moexex 2695. (Revised by Wolf Lammen, 2-Oct-2023.) |
Ref | Expression |
---|---|
moexexvw | ⊢ ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1896 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1896 | . 2 ⊢ Ⅎ𝑦∃*𝑥𝜑 | |
3 | nfe1 2122 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝜓) | |
4 | 3 | nfmov 2602 | . 2 ⊢ Ⅎ𝑥∃*𝑦∃𝑥(𝜑 ∧ 𝜓) |
5 | 1, 2, 4 | moexexlem 2683 | 1 ⊢ ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1523 ∃wex 1765 ∃*wmo 2576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-11 2128 ax-12 2143 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 |
This theorem is referenced by: mosub 3645 |
Copyright terms: Public domain | W3C validator |