Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moexexvw | Structured version Visualization version GIF version |
Description: "At most one" double quantification. Version of moexexv 2641 with an additional disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 26-Jan-1997.) (Revised by Gino Giotto, 22-Aug-2023.) Factor out common proof lines with moexex 2640. (Revised by Wolf Lammen, 2-Oct-2023.) |
Ref | Expression |
---|---|
moexexvw | ⊢ ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑦∃*𝑥𝜑 | |
3 | nfe1 2149 | . . 3 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝜓) | |
4 | 3 | nfmov 2560 | . 2 ⊢ Ⅎ𝑥∃*𝑦∃𝑥(𝜑 ∧ 𝜓) |
5 | 1, 2, 4 | moexexlem 2628 | 1 ⊢ ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦∃𝑥(𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1783 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-mo 2540 |
This theorem is referenced by: mosub 3643 funco 6458 |
Copyright terms: Public domain | W3C validator |