MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mosub Structured version   Visualization version   GIF version

Theorem mosub 3710
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
mosub.1 ∃*𝑥𝜑
Assertion
Ref Expression
mosub ∃*𝑥𝑦(𝑦 = 𝐴𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mosub
StepHypRef Expression
1 moeq 3704 . 2 ∃*𝑦 𝑦 = 𝐴
2 mosub.1 . . 3 ∃*𝑥𝜑
32ax-gen 1795 . 2 𝑦∃*𝑥𝜑
4 moexexvw 2622 . 2 ((∃*𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
51, 3, 4mp2an 688 1 ∃*𝑥𝑦(𝑦 = 𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 394  wal 1537   = wceq 1539  wex 1779  ∃*wmo 2530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-nf 1784  df-mo 2532  df-cleq 2722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator