| Step | Hyp | Ref
| Expression |
| 1 | | eqeq2 2747 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) |
| 2 | 1 | imbi2d 340 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝐴))) |
| 3 | 2 | albidv 1920 |
. . . 4
⊢ (𝑦 = 𝐴 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝐴))) |
| 4 | 3 | imbi1d 341 |
. . 3
⊢ (𝑦 = 𝐴 → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑))) |
| 5 | | equequ2 2025 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) |
| 6 | 5 | imbi2d 340 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝑧))) |
| 7 | 6 | albidv 1920 |
. . . . 5
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑧))) |
| 8 | 7 | 19.8aw 2050 |
. . . 4
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 9 | | df-mo 2539 |
. . . 4
⊢
(∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
| 10 | 8, 9 | sylibr 234 |
. . 3
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) |
| 11 | 4, 10 | vtoclg 3533 |
. 2
⊢ (𝐴 ∈ V → (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑)) |
| 12 | | eqvisset 3479 |
. . . . . 6
⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) |
| 13 | 12 | imim2i 16 |
. . . . 5
⊢ ((𝜑 → 𝑥 = 𝐴) → (𝜑 → 𝐴 ∈ V)) |
| 14 | 13 | con3rr3 155 |
. . . 4
⊢ (¬
𝐴 ∈ V → ((𝜑 → 𝑥 = 𝐴) → ¬ 𝜑)) |
| 15 | 14 | alimdv 1916 |
. . 3
⊢ (¬
𝐴 ∈ V →
(∀𝑥(𝜑 → 𝑥 = 𝐴) → ∀𝑥 ¬ 𝜑)) |
| 16 | | alnex 1781 |
. . . 4
⊢
(∀𝑥 ¬
𝜑 ↔ ¬ ∃𝑥𝜑) |
| 17 | | nexmo 2540 |
. . . 4
⊢ (¬
∃𝑥𝜑 → ∃*𝑥𝜑) |
| 18 | 16, 17 | sylbi 217 |
. . 3
⊢
(∀𝑥 ¬
𝜑 → ∃*𝑥𝜑) |
| 19 | 15, 18 | syl6 35 |
. 2
⊢ (¬
𝐴 ∈ V →
(∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑)) |
| 20 | 11, 19 | pm2.61i 182 |
1
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑) |