| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqeq2 2749 | . . . . . 6
⊢ (𝑦 = 𝐴 → (𝑥 = 𝑦 ↔ 𝑥 = 𝐴)) | 
| 2 | 1 | imbi2d 340 | . . . . 5
⊢ (𝑦 = 𝐴 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝐴))) | 
| 3 | 2 | albidv 1920 | . . . 4
⊢ (𝑦 = 𝐴 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝐴))) | 
| 4 | 3 | imbi1d 341 | . . 3
⊢ (𝑦 = 𝐴 → ((∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) ↔ (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑))) | 
| 5 |  | equequ2 2025 | . . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | 
| 6 | 5 | imbi2d 340 | . . . . . 6
⊢ (𝑦 = 𝑧 → ((𝜑 → 𝑥 = 𝑦) ↔ (𝜑 → 𝑥 = 𝑧))) | 
| 7 | 6 | albidv 1920 | . . . . 5
⊢ (𝑦 = 𝑧 → (∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑧))) | 
| 8 | 7 | 19.8aw 2050 | . . . 4
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 9 |  | df-mo 2540 | . . . 4
⊢
(∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 10 | 8, 9 | sylibr 234 | . . 3
⊢
(∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) | 
| 11 | 4, 10 | vtoclg 3554 | . 2
⊢ (𝐴 ∈ V → (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑)) | 
| 12 |  | eqvisset 3500 | . . . . . 6
⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | 
| 13 | 12 | imim2i 16 | . . . . 5
⊢ ((𝜑 → 𝑥 = 𝐴) → (𝜑 → 𝐴 ∈ V)) | 
| 14 | 13 | con3rr3 155 | . . . 4
⊢ (¬
𝐴 ∈ V → ((𝜑 → 𝑥 = 𝐴) → ¬ 𝜑)) | 
| 15 | 14 | alimdv 1916 | . . 3
⊢ (¬
𝐴 ∈ V →
(∀𝑥(𝜑 → 𝑥 = 𝐴) → ∀𝑥 ¬ 𝜑)) | 
| 16 |  | alnex 1781 | . . . 4
⊢
(∀𝑥 ¬
𝜑 ↔ ¬ ∃𝑥𝜑) | 
| 17 |  | nexmo 2541 | . . . 4
⊢ (¬
∃𝑥𝜑 → ∃*𝑥𝜑) | 
| 18 | 16, 17 | sylbi 217 | . . 3
⊢
(∀𝑥 ¬
𝜑 → ∃*𝑥𝜑) | 
| 19 | 15, 18 | syl6 35 | . 2
⊢ (¬
𝐴 ∈ V →
(∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑)) | 
| 20 | 11, 19 | pm2.61i 182 | 1
⊢
(∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑) |