MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mo2icl Structured version   Visualization version   GIF version

Theorem mo2icl 3641
Description: Theorem for inferring "at most one." (Contributed by NM, 17-Oct-1996.)
Assertion
Ref Expression
mo2icl (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem mo2icl
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2806 . . . . . 6 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
21imbi2d 342 . . . . 5 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
32albidv 1898 . . . 4 (𝑦 = 𝐴 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥(𝜑𝑥 = 𝐴)))
43imbi1d 343 . . 3 (𝑦 = 𝐴 → ((∀𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑) ↔ (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑)))
5 19.8a 2144 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
6 df-mo 2576 . . . 4 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
75, 6sylibr 235 . . 3 (∀𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
84, 7vtoclg 3510 . 2 (𝐴 ∈ V → (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑))
9 eqvisset 3454 . . . . . 6 (𝑥 = 𝐴𝐴 ∈ V)
109imim2i 16 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜑𝐴 ∈ V))
1110con3rr3 158 . . . 4 𝐴 ∈ V → ((𝜑𝑥 = 𝐴) → ¬ 𝜑))
1211alimdv 1894 . . 3 𝐴 ∈ V → (∀𝑥(𝜑𝑥 = 𝐴) → ∀𝑥 ¬ 𝜑))
13 alnex 1763 . . . 4 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
14 nexmo 2577 . . . 4 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
1513, 14sylbi 218 . . 3 (∀𝑥 ¬ 𝜑 → ∃*𝑥𝜑)
1612, 15syl6 35 . 2 𝐴 ∈ V → (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑))
178, 16pm2.61i 183 1 (∀𝑥(𝜑𝑥 = 𝐴) → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1520   = wceq 1522  wex 1761  wcel 2081  ∃*wmo 2574  Vcvv 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-clab 2776  df-cleq 2788  df-clel 2863  df-v 3439
This theorem is referenced by:  invdisj  4948  reusv1  5189  reusv2lem1  5190  opabiotafun  6611  fseqenlem2  9297  dfac2b  9402  imasaddfnlem  16630  imasvscafn  16639  bnj149  31763
  Copyright terms: Public domain W3C validator