Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version |
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3622 and eueq 3623. (Proof shortened by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2781 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
2 | 1 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
3 | eqeq1 2763 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | mo4 2585 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
5 | 2, 4 | mpbir 234 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∀wal 1537 = wceq 1539 ∃*wmo 2556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-mo 2558 df-cleq 2751 |
This theorem is referenced by: eueq 3623 mosub 3628 euxfr2w 3635 euxfr2 3637 reueq 3652 rmoeq 3653 reuxfrd 3663 sndisj 5024 disjxsn 5026 funopabeq 6372 funcnvsn 6386 fvmptg 6758 fvopab6 6793 mpofun 7271 ovmpt4g 7293 ov3 7308 ov6g 7309 oprabex3 7683 1stconst 7801 2ndconst 7802 iunmapdisj 9484 axaddf 10606 axmulf 10607 joinfval 17678 joinval 17682 meetfval 17692 meetval 17696 reuxfrdf 30362 abrexdom2jm 30376 abrexdom2 35450 |
Copyright terms: Public domain | W3C validator |