| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version | ||
| Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3678 and eueq 3679. (Proof shortened by BJ, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2751 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
| 3 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 4 | 3 | mo4 2559 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-cleq 2721 |
| This theorem is referenced by: eueq 3679 mosub 3684 euxfr2w 3691 euxfr2 3693 reueq 3708 rmoeq 3709 reuxfrd 3719 sndisj 5099 disjxsn 5101 funopabeq 6552 funcnvsn 6566 fvmptg 6966 fvopab6 7002 mpofun 7513 ovmpt4g 7536 ov3 7552 ov6g 7553 abrexexg 7939 oprabex3 7956 1stconst 8079 2ndconst 8080 iunmapdisj 9976 axaddf 11098 axmulf 11099 joinfval 18332 joinval 18336 meetfval 18346 meetval 18350 reuxfrdf 32420 abrexdom2jm 32437 abrexdom2 37725 tfsconcatlem 43325 sinnpoly 46892 |
| Copyright terms: Public domain | W3C validator |