| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version | ||
| Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3675 and eueq 3676. (Proof shortened by BJ, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2751 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
| 3 | eqeq1 2733 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 4 | 3 | mo4 2559 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 df-cleq 2721 |
| This theorem is referenced by: eueq 3676 mosub 3681 euxfr2w 3688 euxfr2 3690 reueq 3705 rmoeq 3706 reuxfrd 3716 sndisj 5094 disjxsn 5096 funopabeq 6536 funcnvsn 6550 fvmptg 6948 fvopab6 6984 mpofun 7493 ovmpt4g 7516 ov3 7532 ov6g 7533 abrexexg 7919 oprabex3 7935 1stconst 8056 2ndconst 8057 iunmapdisj 9952 axaddf 11074 axmulf 11075 joinfval 18308 joinval 18312 meetfval 18322 meetval 18326 reuxfrdf 32393 abrexdom2jm 32410 abrexdom2 37698 tfsconcatlem 43298 sinnpoly 46865 |
| Copyright terms: Public domain | W3C validator |