| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version | ||
| Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3661 and eueq 3662. (Proof shortened by BJ, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2753 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
| 2 | 1 | gen2 1797 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
| 3 | eqeq1 2735 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 4 | 3 | mo4 2561 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 df-cleq 2723 |
| This theorem is referenced by: eueq 3662 mosub 3667 euxfr2w 3674 euxfr2 3676 reueq 3691 rmoeq 3692 reuxfrd 3702 sndisj 5081 disjxsn 5083 funopabeq 6517 funcnvsn 6531 fvmptg 6927 fvopab6 6963 mpofun 7470 ovmpt4g 7493 ov3 7509 ov6g 7510 abrexexg 7893 oprabex3 7909 1stconst 8030 2ndconst 8031 iunmapdisj 9914 axaddf 11036 axmulf 11037 joinfval 18277 joinval 18281 meetfval 18291 meetval 18295 reuxfrdf 32470 abrexdom2jm 32488 abrexdom2 37781 tfsconcatlem 43439 sinnpoly 47001 |
| Copyright terms: Public domain | W3C validator |