MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeq Structured version   Visualization version   GIF version

Theorem moeq 3678
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3678 and eueq 3679. (Proof shortened by BJ, 24-Sep-2022.)
Assertion
Ref Expression
moeq ∃*𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem moeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2751 . . 3 ((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
21gen2 1796 . 2 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
3 eqeq1 2733 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
43mo4 2559 . 2 (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦))
52, 4mpbir 231 1 ∃*𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  ∃*wmo 2531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2533  df-cleq 2721
This theorem is referenced by:  eueq  3679  mosub  3684  euxfr2w  3691  euxfr2  3693  reueq  3708  rmoeq  3709  reuxfrd  3719  sndisj  5099  disjxsn  5101  funopabeq  6552  funcnvsn  6566  fvmptg  6966  fvopab6  7002  mpofun  7513  ovmpt4g  7536  ov3  7552  ov6g  7553  abrexexg  7939  oprabex3  7956  1stconst  8079  2ndconst  8080  iunmapdisj  9976  axaddf  11098  axmulf  11099  joinfval  18332  joinval  18336  meetfval  18346  meetval  18350  reuxfrdf  32420  abrexdom2jm  32437  abrexdom2  37725  tfsconcatlem  43325  sinnpoly  46892
  Copyright terms: Public domain W3C validator