Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version |
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3643 and eueq 3644. (Proof shortened by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2765 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
2 | 1 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
3 | eqeq1 2743 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | mo4 2567 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃*wmo 2539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2541 df-cleq 2731 |
This theorem is referenced by: eueq 3644 mosub 3649 euxfr2w 3656 euxfr2 3658 reueq 3673 rmoeq 3674 reuxfrd 3684 sndisj 5066 disjxsn 5068 funopabeq 6477 funcnvsn 6491 fvmptg 6882 fvopab6 6917 mpofun 7407 ovmpt4g 7429 ov3 7444 ov6g 7445 abrexexg 7812 oprabex3 7829 1stconst 7949 2ndconst 7950 iunmapdisj 9788 axaddf 10910 axmulf 10911 joinfval 18100 joinval 18104 meetfval 18114 meetval 18118 reuxfrdf 30848 abrexdom2jm 30862 abrexdom2 35898 |
Copyright terms: Public domain | W3C validator |