Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version |
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3637 and eueq 3638. (Proof shortened by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2764 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
2 | 1 | gen2 1800 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
3 | eqeq1 2742 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | mo4 2566 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 df-cleq 2730 |
This theorem is referenced by: eueq 3638 mosub 3643 euxfr2w 3650 euxfr2 3652 reueq 3667 rmoeq 3668 reuxfrd 3678 sndisj 5061 disjxsn 5063 funopabeq 6454 funcnvsn 6468 fvmptg 6855 fvopab6 6890 mpofun 7376 ovmpt4g 7398 ov3 7413 ov6g 7414 oprabex3 7793 1stconst 7911 2ndconst 7912 iunmapdisj 9710 axaddf 10832 axmulf 10833 joinfval 18006 joinval 18010 meetfval 18020 meetval 18024 reuxfrdf 30740 abrexdom2jm 30754 abrexdom2 35816 |
Copyright terms: Public domain | W3C validator |