MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeq Structured version   Visualization version   GIF version

Theorem moeq 3661
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3661 and eueq 3662. (Proof shortened by BJ, 24-Sep-2022.)
Assertion
Ref Expression
moeq ∃*𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem moeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2753 . . 3 ((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
21gen2 1797 . 2 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
3 eqeq1 2735 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
43mo4 2561 . 2 (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦))
52, 4mpbir 231 1 ∃*𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539   = wceq 1541  ∃*wmo 2533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-mo 2535  df-cleq 2723
This theorem is referenced by:  eueq  3662  mosub  3667  euxfr2w  3674  euxfr2  3676  reueq  3691  rmoeq  3692  reuxfrd  3702  sndisj  5081  disjxsn  5083  funopabeq  6517  funcnvsn  6531  fvmptg  6927  fvopab6  6963  mpofun  7470  ovmpt4g  7493  ov3  7509  ov6g  7510  abrexexg  7893  oprabex3  7909  1stconst  8030  2ndconst  8031  iunmapdisj  9914  axaddf  11036  axmulf  11037  joinfval  18277  joinval  18281  meetfval  18291  meetval  18295  reuxfrdf  32470  abrexdom2jm  32488  abrexdom2  37781  tfsconcatlem  43439  sinnpoly  47001
  Copyright terms: Public domain W3C validator