![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version |
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3729 and eueq 3730. (Proof shortened by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2766 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
2 | 1 | gen2 1794 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
3 | eqeq1 2744 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | mo4 2569 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
5 | 2, 4 | mpbir 231 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃*wmo 2541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-cleq 2732 |
This theorem is referenced by: eueq 3730 mosub 3735 euxfr2w 3742 euxfr2 3744 reueq 3759 rmoeq 3760 reuxfrd 3770 sndisj 5158 disjxsn 5160 funopabeq 6614 funcnvsn 6628 fvmptg 7027 fvopab6 7063 mpofun 7574 ovmpt4g 7597 ov3 7613 ov6g 7614 abrexexg 8001 oprabex3 8018 1stconst 8141 2ndconst 8142 iunmapdisj 10092 axaddf 11214 axmulf 11215 joinfval 18443 joinval 18447 meetfval 18457 meetval 18461 reuxfrdf 32519 abrexdom2jm 32536 abrexdom2 37691 tfsconcatlem 43298 |
Copyright terms: Public domain | W3C validator |