MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeq Structured version   Visualization version   GIF version

Theorem moeq 3675
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3675 and eueq 3676. (Proof shortened by BJ, 24-Sep-2022.)
Assertion
Ref Expression
moeq ∃*𝑥 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴

Proof of Theorem moeq
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr3 2751 . . 3 ((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
21gen2 1796 . 2 𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦)
3 eqeq1 2733 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
43mo4 2559 . 2 (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐴) → 𝑥 = 𝑦))
52, 4mpbir 231 1 ∃*𝑥 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  ∃*wmo 2531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2533  df-cleq 2721
This theorem is referenced by:  eueq  3676  mosub  3681  euxfr2w  3688  euxfr2  3690  reueq  3705  rmoeq  3706  reuxfrd  3716  sndisj  5094  disjxsn  5096  funopabeq  6536  funcnvsn  6550  fvmptg  6948  fvopab6  6984  mpofun  7493  ovmpt4g  7516  ov3  7532  ov6g  7533  abrexexg  7919  oprabex3  7935  1stconst  8056  2ndconst  8057  iunmapdisj  9952  axaddf  11074  axmulf  11075  joinfval  18308  joinval  18312  meetfval  18322  meetval  18326  reuxfrdf  32393  abrexdom2jm  32410  abrexdom2  37698  tfsconcatlem  43298  sinnpoly  46865
  Copyright terms: Public domain W3C validator