| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version | ||
| Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3690 and eueq 3691. (Proof shortened by BJ, 24-Sep-2022.) |
| Ref | Expression |
|---|---|
| moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2757 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
| 2 | 1 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
| 3 | eqeq1 2739 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
| 4 | 3 | mo4 2565 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃*wmo 2537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-cleq 2727 |
| This theorem is referenced by: eueq 3691 mosub 3696 euxfr2w 3703 euxfr2 3705 reueq 3720 rmoeq 3721 reuxfrd 3731 sndisj 5111 disjxsn 5113 funopabeq 6572 funcnvsn 6586 fvmptg 6984 fvopab6 7020 mpofun 7531 ovmpt4g 7554 ov3 7570 ov6g 7571 abrexexg 7959 oprabex3 7976 1stconst 8099 2ndconst 8100 iunmapdisj 10037 axaddf 11159 axmulf 11160 joinfval 18383 joinval 18387 meetfval 18397 meetval 18401 reuxfrdf 32472 abrexdom2jm 32489 abrexdom2 37755 tfsconcatlem 43360 |
| Copyright terms: Public domain | W3C validator |