![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moeq | Structured version Visualization version GIF version |
Description: There exists at most one set equal to a given class. (Contributed by NM, 8-Mar-1995.) Shorten combined proofs of moeq 3704 and eueq 3705. (Proof shortened by BJ, 24-Sep-2022.) |
Ref | Expression |
---|---|
moeq | ⊢ ∃*𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2759 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) | |
2 | 1 | gen2 1799 | . 2 ⊢ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦) |
3 | eqeq1 2737 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 = 𝐴 ↔ 𝑦 = 𝐴)) | |
4 | 3 | mo4 2561 | . 2 ⊢ (∃*𝑥 𝑥 = 𝐴 ↔ ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐴) → 𝑥 = 𝑦)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ ∃*𝑥 𝑥 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃*wmo 2533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-mo 2535 df-cleq 2725 |
This theorem is referenced by: eueq 3705 mosub 3710 euxfr2w 3717 euxfr2 3719 reueq 3734 rmoeq 3735 reuxfrd 3745 sndisj 5140 disjxsn 5142 funopabeq 6585 funcnvsn 6599 fvmptg 6997 fvopab6 7032 mpofun 7532 ovmpt4g 7555 ov3 7570 ov6g 7571 abrexexg 7947 oprabex3 7964 1stconst 8086 2ndconst 8087 iunmapdisj 10018 axaddf 11140 axmulf 11141 joinfval 18326 joinval 18330 meetfval 18340 meetval 18344 reuxfrdf 31731 abrexdom2jm 31745 abrexdom2 36599 tfsconcatlem 42086 |
Copyright terms: Public domain | W3C validator |