MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moeq3 Structured version   Visualization version   GIF version

Theorem moeq3 3609
Description: "At most one" property of equality (split into 3 cases). (The first two hypotheses could be eliminated with longer proof.) (Contributed by NM, 23-Apr-1995.)
Hypotheses
Ref Expression
moeq3.1 𝐵 ∈ V
moeq3.2 𝐶 ∈ V
moeq3.3 ¬ (𝜑𝜓)
Assertion
Ref Expression
moeq3 ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))
Distinct variable groups:   𝜑,𝑥   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem moeq3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq2 2750 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
21anbi2d 632 . . . . . 6 (𝑦 = 𝐴 → ((𝜑𝑥 = 𝑦) ↔ (𝜑𝑥 = 𝐴)))
3 biidd 265 . . . . . 6 (𝑦 = 𝐴 → ((¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ↔ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵)))
4 biidd 265 . . . . . 6 (𝑦 = 𝐴 → ((𝜓𝑥 = 𝐶) ↔ (𝜓𝑥 = 𝐶)))
52, 3, 43orbi123d 1436 . . . . 5 (𝑦 = 𝐴 → (((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) ↔ ((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
65eubidv 2587 . . . 4 (𝑦 = 𝐴 → (∃!𝑥((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) ↔ ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
7 vex 3401 . . . . 5 𝑦 ∈ V
8 moeq3.1 . . . . 5 𝐵 ∈ V
9 moeq3.2 . . . . 5 𝐶 ∈ V
10 moeq3.3 . . . . 5 ¬ (𝜑𝜓)
117, 8, 9, 10eueq3 3608 . . . 4 ∃!𝑥((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))
126, 11vtoclg 3470 . . 3 (𝐴 ∈ V → ∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)))
13 eumo 2579 . . 3 (∃!𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)))
1412, 13syl 17 . 2 (𝐴 ∈ V → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)))
15 eqvisset 3414 . . . . . . . 8 (𝑥 = 𝐴𝐴 ∈ V)
16 pm2.21 123 . . . . . . . 8 𝐴 ∈ V → (𝐴 ∈ V → 𝑥 = 𝑦))
1715, 16syl5 34 . . . . . . 7 𝐴 ∈ V → (𝑥 = 𝐴𝑥 = 𝑦))
1817anim2d 615 . . . . . 6 𝐴 ∈ V → ((𝜑𝑥 = 𝐴) → (𝜑𝑥 = 𝑦)))
1918orim1d 965 . . . . 5 𝐴 ∈ V → (((𝜑𝑥 = 𝐴) ∨ ((¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))) → ((𝜑𝑥 = 𝑦) ∨ ((¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)))))
20 3orass 1091 . . . . 5 (((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) ↔ ((𝜑𝑥 = 𝐴) ∨ ((¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
21 3orass 1091 . . . . 5 (((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) ↔ ((𝜑𝑥 = 𝑦) ∨ ((¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
2219, 20, 213imtr4g 299 . . . 4 𝐴 ∈ V → (((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) → ((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
2322alrimiv 1933 . . 3 𝐴 ∈ V → ∀𝑥(((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) → ((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
24 euimmo 2619 . . 3 (∀𝑥(((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) → ((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))) → (∃!𝑥((𝜑𝑥 = 𝑦) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)) → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))))
2523, 11, 24mpisyl 21 . 2 𝐴 ∈ V → ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶)))
2614, 25pm2.61i 185 1 ∃*𝑥((𝜑𝑥 = 𝐴) ∨ (¬ (𝜑𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓𝑥 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 846  w3o 1087  wal 1540   = wceq 1542  wcel 2113  ∃*wmo 2538  ∃!weu 2569  Vcvv 3397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-tru 1545  df-ex 1787  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3399
This theorem is referenced by:  tz7.44lem1  8063
  Copyright terms: Public domain W3C validator