| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanlr1 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.) |
| Ref | Expression |
|---|---|
| mpanlr1.1 | ⊢ 𝜓 |
| mpanlr1.2 | ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mpanlr1 | ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanlr1.1 | . . 3 ⊢ 𝜓 | |
| 2 | 1 | jctl 523 | . 2 ⊢ (𝜒 → (𝜓 ∧ 𝜒)) |
| 3 | mpanlr1.2 | . 2 ⊢ (((𝜑 ∧ (𝜓 ∧ 𝜒)) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | sylanl2 681 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oecl 8575 omass 8618 oen0 8624 oeordi 8625 oewordri 8630 oeworde 8631 |
| Copyright terms: Public domain | W3C validator |