MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpanlr1 Structured version   Visualization version   GIF version

Theorem mpanlr1 702
Description: An inference based on modus ponens. (Contributed by NM, 30-Dec-2004.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Hypotheses
Ref Expression
mpanlr1.1 𝜓
mpanlr1.2 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
mpanlr1 (((𝜑𝜒) ∧ 𝜃) → 𝜏)

Proof of Theorem mpanlr1
StepHypRef Expression
1 mpanlr1.1 . . 3 𝜓
21jctl 523 . 2 (𝜒 → (𝜓𝜒))
3 mpanlr1.2 . 2 (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)
42, 3sylanl2 677 1 (((𝜑𝜒) ∧ 𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  oecl  8329  omass  8373  oen0  8379  oeordi  8380  oewordri  8385  oeworde  8386
  Copyright terms: Public domain W3C validator