![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 702 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 690 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: wfisgOLD 6386 f1ofvswap 7342 2dom 9095 limensuci 9219 phplem4OLD 9283 fiintOLD 9395 frinsg 9820 djuen 10239 isfin1-3 10455 prlem934 11102 0idsr 11166 1idsr 11167 00sr 11168 addresr 11207 mulresr 11208 reclt1 12190 crne0 12286 nominpos 12530 fvf1tp 13840 expnass 14257 faclbnd2 14340 crim 15164 01sqrexlem1 15291 01sqrexlem7 15297 sqrt00 15312 sqreulem 15408 mulcn2 15642 ege2le3 16138 sin02gt0 16240 opoe 16411 oddprm 16857 pythagtriplem2 16864 pythagtriplem3 16865 pythagtriplem16 16877 pythagtrip 16881 pc1 16902 prmlem0 17153 acsfn0 17718 mgpress 20176 mgpressOLD 20177 abvneg 20849 pmatcollpw3 22811 leordtval2 23241 txswaphmeo 23834 iccntr 24862 dvlipcn 26053 sinq34lt0t 26569 cosordlem 26590 efif1olem3 26604 lgamgulmlem2 27091 basellem3 27144 ppiub 27266 bposlem9 27354 lgsne0 27397 lgsdinn0 27407 chebbnd1 27534 eupth2lem3lem4 30263 mayete3i 31760 lnop0 31998 nmcexi 32058 nmoptrii 32126 nmopcoadji 32133 hstle1 32258 hst0 32265 strlem5 32287 jplem1 32300 cnvoprabOLD 32734 subfacp1lem5 35152 limsucncmpi 36411 matunitlindflem1 37576 poimirlem15 37595 dvasin 37664 fdc 37705 eldioph3b 42721 oaabsb 43256 tfsconcatfv2 43302 or2expropbi 46949 ich2exprop 47345 sprsymrelfolem2 47367 clnbgrisubgrgrim 47784 sinhpcosh 48832 |
Copyright terms: Public domain | W3C validator |