| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 703 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 691 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: wfisgOLD 6343 f1ofvswap 7298 2dom 9042 limensuci 9165 fiintOLD 9337 frinsg 9763 djuen 10182 isfin1-3 10398 prlem934 11045 0idsr 11109 1idsr 11110 00sr 11111 addresr 11150 mulresr 11151 reclt1 12135 crne0 12231 nominpos 12476 fvf1tp 13804 expnass 14224 faclbnd2 14307 crim 15132 01sqrexlem1 15259 01sqrexlem7 15265 sqrt00 15280 sqreulem 15376 mulcn2 15610 ege2le3 16104 sin02gt0 16208 opoe 16380 oddprm 16828 pythagtriplem2 16835 pythagtriplem3 16836 pythagtriplem16 16848 pythagtrip 16852 pc1 16873 prmlem0 17123 acsfn0 17670 mgpress 20108 abvneg 20784 pmatcollpw3 22720 leordtval2 23148 txswaphmeo 23741 iccntr 24759 dvlipcn 25949 sinq34lt0t 26468 cosordlem 26489 efif1olem3 26503 lgamgulmlem2 26990 basellem3 27043 ppiub 27165 bposlem9 27253 lgsne0 27296 lgsdinn0 27306 chebbnd1 27433 eupth2lem3lem4 30158 mayete3i 31655 lnop0 31893 nmcexi 31953 nmoptrii 32021 nmopcoadji 32028 hstle1 32153 hst0 32160 strlem5 32182 jplem1 32195 subfacp1lem5 35152 limsucncmpi 36409 matunitlindflem1 37586 poimirlem15 37605 dvasin 37674 fdc 37715 eldioph3b 42735 oaabsb 43265 tfsconcatfv2 43311 omssaxinf2 44961 or2expropbi 47011 ich2exprop 47433 sprsymrelfolem2 47455 clnbgrisubgrgrim 47893 sinhpcosh 49552 |
| Copyright terms: Public domain | W3C validator |