| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 703 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 691 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: f1ofvswap 7240 2dom 8952 limensuci 9066 frinsg 9644 djuen 10061 isfin1-3 10277 prlem934 10924 0idsr 10988 1idsr 10989 00sr 10990 addresr 11029 mulresr 11030 reclt1 12017 crne0 12118 nominpos 12358 fvf1tp 13693 expnass 14115 faclbnd2 14198 crim 15022 01sqrexlem1 15149 01sqrexlem7 15155 sqrt00 15170 sqreulem 15267 mulcn2 15503 ege2le3 15997 sin02gt0 16101 opoe 16274 oddprm 16722 pythagtriplem2 16729 pythagtriplem3 16730 pythagtriplem16 16742 pythagtrip 16746 pc1 16767 prmlem0 17017 acsfn0 17566 mgpress 20069 abvneg 20742 pmatcollpw3 22700 leordtval2 23128 txswaphmeo 23721 iccntr 24738 dvlipcn 25927 sinq34lt0t 26446 cosordlem 26467 efif1olem3 26481 lgamgulmlem2 26968 basellem3 27021 ppiub 27143 bposlem9 27231 lgsne0 27274 lgsdinn0 27284 chebbnd1 27411 eupth2lem3lem4 30209 mayete3i 31706 lnop0 31944 nmcexi 32004 nmoptrii 32072 nmopcoadji 32079 hstle1 32204 hst0 32211 strlem5 32233 jplem1 32246 vonf1owev 35150 subfacp1lem5 35226 limsucncmpi 36485 matunitlindflem1 37662 poimirlem15 37681 dvasin 37750 fdc 37791 eldioph3b 42804 oaabsb 43333 tfsconcatfv2 43379 omssaxinf2 45027 or2expropbi 47071 ich2exprop 47508 sprsymrelfolem2 47530 clnbgrisubgrgrim 47969 sinhpcosh 49778 |
| Copyright terms: Public domain | W3C validator |