Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 700 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 688 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: wfisgOLD 6257 f1ofvswap 7178 2dom 8820 limensuci 8940 phplem4OLD 9003 unfiOLD 9081 fiint 9091 frinsg 9509 djuen 9925 isfin1-3 10142 prlem934 10789 0idsr 10853 1idsr 10854 00sr 10855 addresr 10894 mulresr 10895 reclt1 11870 crne0 11966 nominpos 12210 expnass 13924 faclbnd2 14005 crim 14826 sqrlem1 14954 sqrlem7 14960 sqrt00 14975 sqreulem 15071 mulcn2 15305 ege2le3 15799 sin02gt0 15901 opoe 16072 oddprm 16511 pythagtriplem2 16518 pythagtriplem3 16519 pythagtriplem16 16531 pythagtrip 16535 pc1 16556 prmlem0 16807 acsfn0 17369 mgpress 19735 mgpressOLD 19736 abvneg 20094 pmatcollpw3 21933 leordtval2 22363 txswaphmeo 22956 iccntr 23984 dvlipcn 25158 sinq34lt0t 25666 cosordlem 25686 efif1olem3 25700 lgamgulmlem2 26179 basellem3 26232 ppiub 26352 bposlem9 26440 lgsne0 26483 lgsdinn0 26493 chebbnd1 26620 eupth2lem3lem4 28595 mayete3i 30090 lnop0 30328 nmcexi 30388 nmoptrii 30456 nmopcoadji 30463 hstle1 30588 hst0 30595 strlem5 30617 jplem1 30630 cnvoprabOLD 31055 subfacp1lem5 33146 limsucncmpi 34634 matunitlindflem1 35773 poimirlem15 35792 dvasin 35861 fdc 35903 eldioph3b 40587 or2expropbi 44528 ich2exprop 44923 sprsymrelfolem2 44945 sinhpcosh 46442 |
Copyright terms: Public domain | W3C validator |