Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 699 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 687 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: wfisgOLD 6242 f1ofvswap 7158 2dom 8774 limensuci 8889 phplem4 8895 unfiOLD 9011 fiint 9021 frinsg 9440 djuen 9856 isfin1-3 10073 prlem934 10720 0idsr 10784 1idsr 10785 00sr 10786 addresr 10825 mulresr 10826 reclt1 11800 crne0 11896 nominpos 12140 expnass 13852 faclbnd2 13933 crim 14754 sqrlem1 14882 sqrlem7 14888 sqrt00 14903 sqreulem 14999 mulcn2 15233 ege2le3 15727 sin02gt0 15829 opoe 16000 oddprm 16439 pythagtriplem2 16446 pythagtriplem3 16447 pythagtriplem16 16459 pythagtrip 16463 pc1 16484 prmlem0 16735 acsfn0 17286 mgpress 19650 mgpressOLD 19651 abvneg 20009 pmatcollpw3 21841 leordtval2 22271 txswaphmeo 22864 iccntr 23890 dvlipcn 25063 sinq34lt0t 25571 cosordlem 25591 efif1olem3 25605 lgamgulmlem2 26084 basellem3 26137 ppiub 26257 bposlem9 26345 lgsne0 26388 lgsdinn0 26398 chebbnd1 26525 eupth2lem3lem4 28496 mayete3i 29991 lnop0 30229 nmcexi 30289 nmoptrii 30357 nmopcoadji 30364 hstle1 30489 hst0 30496 strlem5 30518 jplem1 30531 cnvoprabOLD 30957 subfacp1lem5 33046 limsucncmpi 34561 matunitlindflem1 35700 poimirlem15 35719 dvasin 35788 fdc 35830 eldioph3b 40503 or2expropbi 44415 ich2exprop 44811 sprsymrelfolem2 44833 sinhpcosh 46328 |
Copyright terms: Public domain | W3C validator |