| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 703 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 691 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: f1ofvswap 7281 2dom 9001 limensuci 9117 fiintOLD 9278 frinsg 9704 djuen 10123 isfin1-3 10339 prlem934 10986 0idsr 11050 1idsr 11051 00sr 11052 addresr 11091 mulresr 11092 reclt1 12078 crne0 12179 nominpos 12419 fvf1tp 13751 expnass 14173 faclbnd2 14256 crim 15081 01sqrexlem1 15208 01sqrexlem7 15214 sqrt00 15229 sqreulem 15326 mulcn2 15562 ege2le3 16056 sin02gt0 16160 opoe 16333 oddprm 16781 pythagtriplem2 16788 pythagtriplem3 16789 pythagtriplem16 16801 pythagtrip 16805 pc1 16826 prmlem0 17076 acsfn0 17621 mgpress 20059 abvneg 20735 pmatcollpw3 22671 leordtval2 23099 txswaphmeo 23692 iccntr 24710 dvlipcn 25899 sinq34lt0t 26418 cosordlem 26439 efif1olem3 26453 lgamgulmlem2 26940 basellem3 26993 ppiub 27115 bposlem9 27203 lgsne0 27246 lgsdinn0 27256 chebbnd1 27383 eupth2lem3lem4 30160 mayete3i 31657 lnop0 31895 nmcexi 31955 nmoptrii 32023 nmopcoadji 32030 hstle1 32155 hst0 32162 strlem5 32184 jplem1 32197 vonf1owev 35095 subfacp1lem5 35171 limsucncmpi 36433 matunitlindflem1 37610 poimirlem15 37629 dvasin 37698 fdc 37739 eldioph3b 42753 oaabsb 43283 tfsconcatfv2 43329 omssaxinf2 44978 or2expropbi 47035 ich2exprop 47472 sprsymrelfolem2 47494 clnbgrisubgrgrim 47932 sinhpcosh 49729 |
| Copyright terms: Public domain | W3C validator |