![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 701 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 689 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: wfisgOLD 6357 f1ofvswap 7309 2dom 9056 limensuci 9181 phplem4OLD 9245 unfiOLD 9338 fiintOLD 9360 frinsg 9785 djuen 10203 isfin1-3 10418 prlem934 11065 0idsr 11129 1idsr 11130 00sr 11131 addresr 11170 mulresr 11171 reclt1 12153 crne0 12249 nominpos 12493 expnass 14218 faclbnd2 14301 crim 15113 01sqrexlem1 15240 01sqrexlem7 15246 sqrt00 15261 sqreulem 15357 mulcn2 15591 ege2le3 16085 sin02gt0 16187 opoe 16358 oddprm 16805 pythagtriplem2 16812 pythagtriplem3 16813 pythagtriplem16 16825 pythagtrip 16829 pc1 16850 prmlem0 17101 acsfn0 17666 mgpress 20126 mgpressOLD 20127 abvneg 20799 pmatcollpw3 22772 leordtval2 23202 txswaphmeo 23795 iccntr 24823 dvlipcn 26013 sinq34lt0t 26532 cosordlem 26552 efif1olem3 26566 lgamgulmlem2 27053 basellem3 27106 ppiub 27228 bposlem9 27316 lgsne0 27359 lgsdinn0 27369 chebbnd1 27496 eupth2lem3lem4 30159 mayete3i 31656 lnop0 31894 nmcexi 31954 nmoptrii 32022 nmopcoadji 32029 hstle1 32154 hst0 32161 strlem5 32183 jplem1 32196 cnvoprabOLD 32632 subfacp1lem5 35023 limsucncmpi 36168 matunitlindflem1 37328 poimirlem15 37347 dvasin 37416 fdc 37457 eldioph3b 42457 oaabsb 42995 tfsconcatfv2 43041 or2expropbi 46683 ich2exprop 47077 sprsymrelfolem2 47099 clnbgrisubgrgrim 47513 sinhpcosh 48520 |
Copyright terms: Public domain | W3C validator |