| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 703 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 691 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: f1ofvswap 7247 2dom 8962 limensuci 9077 fiintOLD 9236 frinsg 9666 djuen 10083 isfin1-3 10299 prlem934 10946 0idsr 11010 1idsr 11011 00sr 11012 addresr 11051 mulresr 11052 reclt1 12038 crne0 12139 nominpos 12379 fvf1tp 13711 expnass 14133 faclbnd2 14216 crim 15040 01sqrexlem1 15167 01sqrexlem7 15173 sqrt00 15188 sqreulem 15285 mulcn2 15521 ege2le3 16015 sin02gt0 16119 opoe 16292 oddprm 16740 pythagtriplem2 16747 pythagtriplem3 16748 pythagtriplem16 16760 pythagtrip 16764 pc1 16785 prmlem0 17035 acsfn0 17584 mgpress 20053 abvneg 20729 pmatcollpw3 22687 leordtval2 23115 txswaphmeo 23708 iccntr 24726 dvlipcn 25915 sinq34lt0t 26434 cosordlem 26455 efif1olem3 26469 lgamgulmlem2 26956 basellem3 27009 ppiub 27131 bposlem9 27219 lgsne0 27262 lgsdinn0 27272 chebbnd1 27399 eupth2lem3lem4 30193 mayete3i 31690 lnop0 31928 nmcexi 31988 nmoptrii 32056 nmopcoadji 32063 hstle1 32188 hst0 32195 strlem5 32217 jplem1 32230 vonf1owev 35083 subfacp1lem5 35159 limsucncmpi 36421 matunitlindflem1 37598 poimirlem15 37617 dvasin 37686 fdc 37727 eldioph3b 42741 oaabsb 43270 tfsconcatfv2 43316 omssaxinf2 44965 or2expropbi 47022 ich2exprop 47459 sprsymrelfolem2 47481 clnbgrisubgrgrim 47920 sinhpcosh 49729 |
| Copyright terms: Public domain | W3C validator |