![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
Ref | Expression |
---|---|
mpanr12.1 | ⊢ 𝜓 |
mpanr12.2 | ⊢ 𝜒 |
mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
mpanr12 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
4 | 2, 3 | mpanr1 703 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
5 | 1, 4 | mpan2 691 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: wfisgOLD 6376 f1ofvswap 7325 2dom 9068 limensuci 9191 phplem4OLD 9254 fiintOLD 9364 frinsg 9788 djuen 10207 isfin1-3 10423 prlem934 11070 0idsr 11134 1idsr 11135 00sr 11136 addresr 11175 mulresr 11176 reclt1 12160 crne0 12256 nominpos 12500 fvf1tp 13825 expnass 14243 faclbnd2 14326 crim 15150 01sqrexlem1 15277 01sqrexlem7 15283 sqrt00 15298 sqreulem 15394 mulcn2 15628 ege2le3 16122 sin02gt0 16224 opoe 16396 oddprm 16843 pythagtriplem2 16850 pythagtriplem3 16851 pythagtriplem16 16863 pythagtrip 16867 pc1 16888 prmlem0 17139 acsfn0 17704 mgpress 20166 mgpressOLD 20167 abvneg 20843 pmatcollpw3 22805 leordtval2 23235 txswaphmeo 23828 iccntr 24856 dvlipcn 26047 sinq34lt0t 26565 cosordlem 26586 efif1olem3 26600 lgamgulmlem2 27087 basellem3 27140 ppiub 27262 bposlem9 27350 lgsne0 27393 lgsdinn0 27403 chebbnd1 27530 eupth2lem3lem4 30259 mayete3i 31756 lnop0 31994 nmcexi 32054 nmoptrii 32122 nmopcoadji 32129 hstle1 32254 hst0 32261 strlem5 32283 jplem1 32296 cnvoprabOLD 32737 subfacp1lem5 35168 limsucncmpi 36427 matunitlindflem1 37602 poimirlem15 37621 dvasin 37690 fdc 37731 eldioph3b 42752 oaabsb 43283 tfsconcatfv2 43329 or2expropbi 46983 ich2exprop 47395 sprsymrelfolem2 47417 clnbgrisubgrgrim 47837 sinhpcosh 48970 |
Copyright terms: Public domain | W3C validator |