| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 703 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 691 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: f1ofvswap 7248 2dom 8961 limensuci 9075 frinsg 9653 djuen 10070 isfin1-3 10286 prlem934 10933 0idsr 10997 1idsr 10998 00sr 10999 addresr 11038 mulresr 11039 reclt1 12026 crne0 12127 nominpos 12367 fvf1tp 13697 expnass 14119 faclbnd2 14202 crim 15026 01sqrexlem1 15153 01sqrexlem7 15159 sqrt00 15174 sqreulem 15271 mulcn2 15507 ege2le3 16001 sin02gt0 16105 opoe 16278 oddprm 16726 pythagtriplem2 16733 pythagtriplem3 16734 pythagtriplem16 16746 pythagtrip 16750 pc1 16771 prmlem0 17021 acsfn0 17570 mgpress 20072 abvneg 20745 pmatcollpw3 22702 leordtval2 23130 txswaphmeo 23723 iccntr 24740 dvlipcn 25929 sinq34lt0t 26448 cosordlem 26469 efif1olem3 26483 lgamgulmlem2 26970 basellem3 27023 ppiub 27145 bposlem9 27233 lgsne0 27276 lgsdinn0 27286 chebbnd1 27413 eupth2lem3lem4 30215 mayete3i 31712 lnop0 31950 nmcexi 32010 nmoptrii 32078 nmopcoadji 32085 hstle1 32210 hst0 32217 strlem5 32239 jplem1 32252 vonf1owev 35175 subfacp1lem5 35251 limsucncmpi 36512 matunitlindflem1 37679 poimirlem15 37698 dvasin 37767 fdc 37808 eldioph3b 42885 oaabsb 43414 tfsconcatfv2 43460 omssaxinf2 45108 or2expropbi 47161 ich2exprop 47598 sprsymrelfolem2 47620 clnbgrisubgrgrim 48059 sinhpcosh 49868 |
| Copyright terms: Public domain | W3C validator |