| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpanr12 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 24-Jul-2009.) |
| Ref | Expression |
|---|---|
| mpanr12.1 | ⊢ 𝜓 |
| mpanr12.2 | ⊢ 𝜒 |
| mpanr12.3 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
| Ref | Expression |
|---|---|
| mpanr12 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpanr12.2 | . 2 ⊢ 𝜒 | |
| 2 | mpanr12.1 | . . 3 ⊢ 𝜓 | |
| 3 | mpanr12.3 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
| 4 | 2, 3 | mpanr1 703 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
| 5 | 1, 4 | mpan2 691 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: f1ofvswap 7284 2dom 9004 limensuci 9123 fiintOLD 9285 frinsg 9711 djuen 10130 isfin1-3 10346 prlem934 10993 0idsr 11057 1idsr 11058 00sr 11059 addresr 11098 mulresr 11099 reclt1 12085 crne0 12186 nominpos 12426 fvf1tp 13758 expnass 14180 faclbnd2 14263 crim 15088 01sqrexlem1 15215 01sqrexlem7 15221 sqrt00 15236 sqreulem 15333 mulcn2 15569 ege2le3 16063 sin02gt0 16167 opoe 16340 oddprm 16788 pythagtriplem2 16795 pythagtriplem3 16796 pythagtriplem16 16808 pythagtrip 16812 pc1 16833 prmlem0 17083 acsfn0 17628 mgpress 20066 abvneg 20742 pmatcollpw3 22678 leordtval2 23106 txswaphmeo 23699 iccntr 24717 dvlipcn 25906 sinq34lt0t 26425 cosordlem 26446 efif1olem3 26460 lgamgulmlem2 26947 basellem3 27000 ppiub 27122 bposlem9 27210 lgsne0 27253 lgsdinn0 27263 chebbnd1 27390 eupth2lem3lem4 30167 mayete3i 31664 lnop0 31902 nmcexi 31962 nmoptrii 32030 nmopcoadji 32037 hstle1 32162 hst0 32169 strlem5 32191 jplem1 32204 vonf1owev 35102 subfacp1lem5 35178 limsucncmpi 36440 matunitlindflem1 37617 poimirlem15 37636 dvasin 37705 fdc 37746 eldioph3b 42760 oaabsb 43290 tfsconcatfv2 43336 omssaxinf2 44985 or2expropbi 47039 ich2exprop 47476 sprsymrelfolem2 47498 clnbgrisubgrgrim 47936 sinhpcosh 49733 |
| Copyright terms: Public domain | W3C validator |