Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (𝜑 → 𝜒) |
sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantl 485 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syldanl 604 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: mpanlr1 705 adantlrl 719 adantlrr 720 1stconst 7800 2ndconst 7801 oesuclem 8160 oelim 8169 mulsub 11121 divsubdiv 11394 lcmneg 15999 vdwlem12 16383 dpjidcl 19248 mplbas2 20802 monmat2matmon 21524 bwth 22110 cnextfun 22764 elbl4 23265 metucn 23273 dvradcnv 25115 dchrisum0lem2a 26200 axcontlem4 26860 cnlnadjlem2 29950 chirredlem2 30273 mdsymlem5 30289 sibfof 31826 relowlssretop 35060 matunitlindflem1 35333 poimirlem29 35366 unichnidl 35749 dmncan2 35795 cvrexchlem 36995 jm2.26 40316 radcnvrat 41391 binomcxplemnotnn0 41433 suplesup 42339 dvnmptdivc 42946 fourierdlem64 43178 fourierdlem74 43188 fourierdlem75 43189 fourierdlem83 43197 etransclem35 43277 iundjiun 43465 hoidmvlelem2 43601 |
Copyright terms: Public domain | W3C validator |