![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (𝜑 → 𝜒) |
sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syldanl 601 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanlr1 705 adantlrl 719 adantlrr 720 1stconst 8141 2ndconst 8142 oesuclem 8581 oelim 8590 undom 9125 mulsub 11733 divsubdiv 12010 lcmneg 16650 vdwlem12 17039 dpjidcl 20102 mplbas2 22083 monmat2matmon 22851 bwth 23439 cnextfun 24093 elbl4 24597 metucn 24605 dvradcnv 26482 dchrisum0lem2a 27579 axcontlem4 29000 cnlnadjlem2 32100 chirredlem2 32423 mdsymlem5 32439 sibfof 34305 relowlssretop 37329 matunitlindflem1 37576 poimirlem29 37609 unichnidl 37991 dmncan2 38037 cvrexchlem 39376 evlsvvval 42518 jm2.26 42959 radcnvrat 44283 binomcxplemnotnn0 44325 suplesup 45254 dvnmptdivc 45859 fourierdlem64 46091 fourierdlem74 46101 fourierdlem75 46102 fourierdlem83 46110 etransclem35 46190 iundjiun 46381 hoidmvlelem2 46517 |
Copyright terms: Public domain | W3C validator |