| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
| Ref | Expression |
|---|---|
| sylanl2.1 | ⊢ (𝜑 → 𝜒) |
| sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanlr1 706 adantlrl 720 adantlrr 721 1stconst 8036 2ndconst 8037 oesuclem 8446 oelim 8455 undom 8985 mulsub 11567 divsubdiv 11844 lcmneg 16516 vdwlem12 16906 dpjidcl 19974 mplbas2 21978 monmat2matmon 22740 bwth 23326 cnextfun 23980 elbl4 24479 metucn 24487 dvradcnv 26358 dchrisum0lem2a 27456 axcontlem4 28947 cnlnadjlem2 32050 chirredlem2 32373 mdsymlem5 32389 sibfof 34374 fineqvnttrclselem1 35162 relowlssretop 37428 matunitlindflem1 37676 poimirlem29 37709 unichnidl 38091 dmncan2 38137 cvrexchlem 39538 evlsvvval 42681 jm2.26 43119 radcnvrat 44431 binomcxplemnotnn0 44473 suplesup 45462 dvnmptdivc 46060 fourierdlem64 46292 fourierdlem74 46302 fourierdlem75 46303 fourierdlem83 46311 etransclem35 46391 iundjiun 46582 hoidmvlelem2 46718 |
| Copyright terms: Public domain | W3C validator |