| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
| Ref | Expression |
|---|---|
| sylanl2.1 | ⊢ (𝜑 → 𝜒) |
| sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanlr1 706 adantlrl 720 adantlrr 721 1stconst 8079 2ndconst 8080 oesuclem 8489 oelim 8498 undom 9029 mulsub 11621 divsubdiv 11898 lcmneg 16573 vdwlem12 16963 dpjidcl 19990 mplbas2 21949 monmat2matmon 22711 bwth 23297 cnextfun 23951 elbl4 24451 metucn 24459 dvradcnv 26330 dchrisum0lem2a 27428 axcontlem4 28894 cnlnadjlem2 31997 chirredlem2 32320 mdsymlem5 32336 sibfof 34331 relowlssretop 37351 matunitlindflem1 37610 poimirlem29 37643 unichnidl 38025 dmncan2 38071 cvrexchlem 39413 evlsvvval 42551 jm2.26 42991 radcnvrat 44303 binomcxplemnotnn0 44345 suplesup 45335 dvnmptdivc 45936 fourierdlem64 46168 fourierdlem74 46178 fourierdlem75 46179 fourierdlem83 46187 etransclem35 46267 iundjiun 46458 hoidmvlelem2 46594 |
| Copyright terms: Public domain | W3C validator |