![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (𝜑 → 𝜒) |
sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | anim2i 611 | . 2 ⊢ ((𝜓 ∧ 𝜑) → (𝜓 ∧ 𝜒)) |
3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | sylan 576 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: mpanlr1 698 adantlrl 712 adantlrr 713 1stconst 7502 2ndconst 7503 oesuclem 7845 oelim 7854 mulsub 10765 divsubdiv 11033 lcmneg 15651 vdwlem12 16029 dpjidcl 18773 mplbas2 19793 monmat2matmon 20957 bwth 21542 cnextfun 22196 elbl4 22696 metucn 22704 dvradcnv 24516 dchrisum0lem2a 25558 axcontlem4 26204 cnlnadjlem2 29452 chirredlem2 29775 mdsymlem5 29791 sibfof 30918 relowlssretop 33709 matunitlindflem1 33894 poimirlem29 33927 unichnidl 34317 dmncan2 34363 cvrexchlem 35440 jm2.26 38354 radcnvrat 39295 binomcxplemnotnn0 39337 suplesup 40299 dvnmptdivc 40897 fourierdlem64 41130 fourierdlem74 41140 fourierdlem75 41141 fourierdlem83 41149 etransclem35 41229 iundjiun 41420 hoidmvlelem2 41556 |
Copyright terms: Public domain | W3C validator |