| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
| Ref | Expression |
|---|---|
| sylanl2.1 | ⊢ (𝜑 → 𝜒) |
| sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanlr1 706 adantlrl 720 adantlrr 721 1stconst 8082 2ndconst 8083 oesuclem 8492 oelim 8501 undom 9033 mulsub 11628 divsubdiv 11905 lcmneg 16580 vdwlem12 16970 dpjidcl 19997 mplbas2 21956 monmat2matmon 22718 bwth 23304 cnextfun 23958 elbl4 24458 metucn 24466 dvradcnv 26337 dchrisum0lem2a 27435 axcontlem4 28901 cnlnadjlem2 32004 chirredlem2 32327 mdsymlem5 32343 sibfof 34338 relowlssretop 37358 matunitlindflem1 37617 poimirlem29 37650 unichnidl 38032 dmncan2 38078 cvrexchlem 39420 evlsvvval 42558 jm2.26 42998 radcnvrat 44310 binomcxplemnotnn0 44352 suplesup 45342 dvnmptdivc 45943 fourierdlem64 46175 fourierdlem74 46185 fourierdlem75 46186 fourierdlem83 46194 etransclem35 46274 iundjiun 46465 hoidmvlelem2 46601 |
| Copyright terms: Public domain | W3C validator |