| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
| Ref | Expression |
|---|---|
| sylanl2.1 | ⊢ (𝜑 → 𝜒) |
| sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanlr1 706 adantlrl 720 adantlrr 721 1stconst 8040 2ndconst 8041 oesuclem 8450 oelim 8459 undom 8989 mulsub 11581 divsubdiv 11858 lcmneg 16532 vdwlem12 16922 dpjidcl 19957 mplbas2 21965 monmat2matmon 22727 bwth 23313 cnextfun 23967 elbl4 24467 metucn 24475 dvradcnv 26346 dchrisum0lem2a 27444 axcontlem4 28930 cnlnadjlem2 32030 chirredlem2 32353 mdsymlem5 32369 sibfof 34307 relowlssretop 37336 matunitlindflem1 37595 poimirlem29 37628 unichnidl 38010 dmncan2 38056 cvrexchlem 39398 evlsvvval 42536 jm2.26 42975 radcnvrat 44287 binomcxplemnotnn0 44329 suplesup 45319 dvnmptdivc 45920 fourierdlem64 46152 fourierdlem74 46162 fourierdlem75 46163 fourierdlem83 46171 etransclem35 46251 iundjiun 46442 hoidmvlelem2 46578 |
| Copyright terms: Public domain | W3C validator |