| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
| Ref | Expression |
|---|---|
| sylanl2.1 | ⊢ (𝜑 → 𝜒) |
| sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanlr1 706 adantlrl 720 adantlrr 721 1stconst 8030 2ndconst 8031 oesuclem 8440 oelim 8449 undom 8978 mulsub 11557 divsubdiv 11834 lcmneg 16511 vdwlem12 16901 dpjidcl 19970 mplbas2 21975 monmat2matmon 22737 bwth 23323 cnextfun 23977 elbl4 24476 metucn 24484 dvradcnv 26355 dchrisum0lem2a 27453 axcontlem4 28943 cnlnadjlem2 32043 chirredlem2 32366 mdsymlem5 32382 sibfof 34348 fineqvnttrclselem1 35129 relowlssretop 37396 matunitlindflem1 37655 poimirlem29 37688 unichnidl 38070 dmncan2 38116 cvrexchlem 39457 evlsvvval 42595 jm2.26 43034 radcnvrat 44346 binomcxplemnotnn0 44388 suplesup 45377 dvnmptdivc 45975 fourierdlem64 46207 fourierdlem74 46217 fourierdlem75 46218 fourierdlem83 46226 etransclem35 46306 iundjiun 46497 hoidmvlelem2 46633 |
| Copyright terms: Public domain | W3C validator |