![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (𝜑 → 𝜒) |
sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mpanlr1 706 adantlrl 720 adantlrr 721 1stconst 8123 2ndconst 8124 oesuclem 8561 oelim 8570 undom 9097 mulsub 11703 divsubdiv 11980 lcmneg 16636 vdwlem12 17025 dpjidcl 20092 mplbas2 22077 monmat2matmon 22845 bwth 23433 cnextfun 24087 elbl4 24591 metucn 24599 dvradcnv 26478 dchrisum0lem2a 27575 axcontlem4 28996 cnlnadjlem2 32096 chirredlem2 32419 mdsymlem5 32435 sibfof 34321 relowlssretop 37345 matunitlindflem1 37602 poimirlem29 37635 unichnidl 38017 dmncan2 38063 cvrexchlem 39401 evlsvvval 42549 jm2.26 42990 radcnvrat 44309 binomcxplemnotnn0 44351 suplesup 45288 dvnmptdivc 45893 fourierdlem64 46125 fourierdlem74 46135 fourierdlem75 46136 fourierdlem83 46144 etransclem35 46224 iundjiun 46415 hoidmvlelem2 46551 |
Copyright terms: Public domain | W3C validator |