| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
| Ref | Expression |
|---|---|
| sylanl2.1 | ⊢ (𝜑 → 𝜒) |
| sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
| 3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
| 4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mpanlr1 706 adantlrl 720 adantlrr 721 1stconst 8097 2ndconst 8098 oesuclem 8535 oelim 8544 undom 9071 mulsub 11678 divsubdiv 11955 lcmneg 16620 vdwlem12 17010 dpjidcl 20039 mplbas2 21998 monmat2matmon 22760 bwth 23346 cnextfun 24000 elbl4 24500 metucn 24508 dvradcnv 26380 dchrisum0lem2a 27478 axcontlem4 28892 cnlnadjlem2 31995 chirredlem2 32318 mdsymlem5 32334 sibfof 34318 relowlssretop 37327 matunitlindflem1 37586 poimirlem29 37619 unichnidl 38001 dmncan2 38047 cvrexchlem 39384 evlsvvval 42533 jm2.26 42973 radcnvrat 44286 binomcxplemnotnn0 44328 suplesup 45314 dvnmptdivc 45915 fourierdlem64 46147 fourierdlem74 46157 fourierdlem75 46158 fourierdlem83 46166 etransclem35 46246 iundjiun 46437 hoidmvlelem2 46573 |
| Copyright terms: Public domain | W3C validator |