Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (𝜑 → 𝜒) |
sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syldanl 601 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpanlr1 702 adantlrl 716 adantlrr 717 1stconst 7911 2ndconst 7912 oesuclem 8317 oelim 8326 mulsub 11348 divsubdiv 11621 lcmneg 16236 vdwlem12 16621 dpjidcl 19576 mplbas2 21153 monmat2matmon 21881 bwth 22469 cnextfun 23123 elbl4 23625 metucn 23633 dvradcnv 25485 dchrisum0lem2a 26570 axcontlem4 27238 cnlnadjlem2 30331 chirredlem2 30654 mdsymlem5 30670 sibfof 32207 relowlssretop 35461 matunitlindflem1 35700 poimirlem29 35733 unichnidl 36116 dmncan2 36162 cvrexchlem 37360 jm2.26 40740 radcnvrat 41821 binomcxplemnotnn0 41863 suplesup 42768 dvnmptdivc 43369 fourierdlem64 43601 fourierdlem74 43611 fourierdlem75 43612 fourierdlem83 43620 etransclem35 43700 iundjiun 43888 hoidmvlelem2 44024 |
Copyright terms: Public domain | W3C validator |