Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylanl2 | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 1-Jan-2005.) |
Ref | Expression |
---|---|
sylanl2.1 | ⊢ (𝜑 → 𝜒) |
sylanl2.2 | ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
sylanl2 | ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantl 482 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜒) |
3 | sylanl2.2 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜏) | |
4 | 2, 3 | syldanl 602 | 1 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: mpanlr1 703 adantlrl 717 adantlrr 718 1stconst 7940 2ndconst 7941 oesuclem 8355 oelim 8364 undom 8846 mulsub 11418 divsubdiv 11691 lcmneg 16308 vdwlem12 16693 dpjidcl 19661 mplbas2 21243 monmat2matmon 21973 bwth 22561 cnextfun 23215 elbl4 23719 metucn 23727 dvradcnv 25580 dchrisum0lem2a 26665 axcontlem4 27335 cnlnadjlem2 30430 chirredlem2 30753 mdsymlem5 30769 sibfof 32307 relowlssretop 35534 matunitlindflem1 35773 poimirlem29 35806 unichnidl 36189 dmncan2 36235 cvrexchlem 37433 jm2.26 40824 radcnvrat 41932 binomcxplemnotnn0 41974 suplesup 42878 dvnmptdivc 43479 fourierdlem64 43711 fourierdlem74 43721 fourierdlem75 43722 fourierdlem83 43730 etransclem35 43810 iundjiun 43998 hoidmvlelem2 44134 |
Copyright terms: Public domain | W3C validator |