MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Structured version   Visualization version   GIF version

Theorem oeworde 8508
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oeworde
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = ∅ → 𝑥 = ∅)
2 oveq2 7358 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
31, 2sseq12d 3976 . . 3 (𝑥 = ∅ → (𝑥 ⊆ (𝐴o 𝑥) ↔ ∅ ⊆ (𝐴o ∅)))
4 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 oveq2 7358 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
64, 5sseq12d 3976 . . 3 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦 ⊆ (𝐴o 𝑦)))
7 id 22 . . . 4 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
8 oveq2 7358 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
97, 8sseq12d 3976 . . 3 (𝑥 = suc 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ suc 𝑦 ⊆ (𝐴o suc 𝑦)))
10 id 22 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
11 oveq2 7358 . . . 4 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
1210, 11sseq12d 3976 . . 3 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝐵 ⊆ (𝐴o 𝐵)))
13 0ss 4355 . . . 4 ∅ ⊆ (𝐴o ∅)
1413a1i 11 . . 3 (𝐴 ∈ (On ∖ 2o) → ∅ ⊆ (𝐴o ∅))
15 eloni 6324 . . . . . 6 (𝑦 ∈ On → Ord 𝑦)
16 eldifi 4085 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
17 oecl 8451 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
1816, 17sylan 581 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
19 eloni 6324 . . . . . . 7 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o 𝑦))
21 ordsucsssuc 7749 . . . . . 6 ((Ord 𝑦 ∧ Ord (𝐴o 𝑦)) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
2215, 20, 21syl2an2 685 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
23 onsuc 7737 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
24 oecl 8451 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
2516, 23, 24syl2an 597 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
26 eloni 6324 . . . . . . . 8 ((𝐴o suc 𝑦) ∈ On → Ord (𝐴o suc 𝑦))
2725, 26syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o suc 𝑦))
28 id 22 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ (On ∖ 2o))
29 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
3029sucid 6396 . . . . . . . . 9 𝑦 ∈ suc 𝑦
31 oeordi 8502 . . . . . . . . 9 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦 ∈ suc 𝑦 → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦)))
3230, 31mpi 20 . . . . . . . 8 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
3323, 28, 32syl2anr 598 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
34 ordsucss 7744 . . . . . . 7 (Ord (𝐴o suc 𝑦) → ((𝐴o 𝑦) ∈ (𝐴o suc 𝑦) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
3527, 33, 34sylc 65 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))
36 sstr2 3950 . . . . . 6 (suc 𝑦 ⊆ suc (𝐴o 𝑦) → (suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3735, 36syl5com 31 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (suc 𝑦 ⊆ suc (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3822, 37sylbid 239 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3938expcom 415 . . 3 (𝑦 ∈ On → (𝐴 ∈ (On ∖ 2o) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦))))
40 dif20el 8419 . . . . 5 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
4116, 40jca 513 . . . 4 (𝐴 ∈ (On ∖ 2o) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
42 ss2iun 4971 . . . . . 6 (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦))
43 limuni 6375 . . . . . . . . 9 (Lim 𝑥𝑥 = 𝑥)
44 uniiun 5017 . . . . . . . . 9 𝑥 = 𝑦𝑥 𝑦
4543, 44eqtrdi 2794 . . . . . . . 8 (Lim 𝑥𝑥 = 𝑦𝑥 𝑦)
4645adantr 482 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 𝑥 = 𝑦𝑥 𝑦)
47 vex 3448 . . . . . . . . . 10 𝑥 ∈ V
48 oelim 8448 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4947, 48mpanlr1 705 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5049anasss 468 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5150an12s 648 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5246, 51sseq12d 3976 . . . . . 6 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦)))
5342, 52syl5ibr 246 . . . . 5 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥)))
5453ex 414 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
5541, 54syl5 34 . . 3 (Lim 𝑥 → (𝐴 ∈ (On ∖ 2o) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
563, 6, 9, 12, 14, 39, 55tfinds3 7792 . 2 (𝐵 ∈ On → (𝐴 ∈ (On ∖ 2o) → 𝐵 ⊆ (𝐴o 𝐵)))
5756impcom 409 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3063  Vcvv 3444  cdif 3906  wss 3909  c0 4281   cuni 4864   ciun 4953  Ord word 6313  Oncon0 6314  Lim wlim 6315  suc csuc 6316  (class class class)co 7350  2oc2o 8374  o coe 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pr 5383  ax-un 7663
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-oexp 8386
This theorem is referenced by:  oeeulem  8516  cnfcom3clem  9575
  Copyright terms: Public domain W3C validator