MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Structured version   Visualization version   GIF version

Theorem oeworde 8508
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. Lemma 3.20 of [Schloeder] p. 10. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oeworde
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = ∅ → 𝑥 = ∅)
2 oveq2 7354 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
31, 2sseq12d 3963 . . 3 (𝑥 = ∅ → (𝑥 ⊆ (𝐴o 𝑥) ↔ ∅ ⊆ (𝐴o ∅)))
4 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 oveq2 7354 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
64, 5sseq12d 3963 . . 3 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦 ⊆ (𝐴o 𝑦)))
7 id 22 . . . 4 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
8 oveq2 7354 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
97, 8sseq12d 3963 . . 3 (𝑥 = suc 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ suc 𝑦 ⊆ (𝐴o suc 𝑦)))
10 id 22 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
11 oveq2 7354 . . . 4 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
1210, 11sseq12d 3963 . . 3 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝐵 ⊆ (𝐴o 𝐵)))
13 0ss 4347 . . . 4 ∅ ⊆ (𝐴o ∅)
1413a1i 11 . . 3 (𝐴 ∈ (On ∖ 2o) → ∅ ⊆ (𝐴o ∅))
15 eloni 6316 . . . . . 6 (𝑦 ∈ On → Ord 𝑦)
16 eldifi 4078 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
17 oecl 8452 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
1816, 17sylan 580 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
19 eloni 6316 . . . . . . 7 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o 𝑦))
21 ordsucsssuc 7753 . . . . . 6 ((Ord 𝑦 ∧ Ord (𝐴o 𝑦)) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
2215, 20, 21syl2an2 686 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
23 onsuc 7743 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
24 oecl 8452 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
2516, 23, 24syl2an 596 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
26 eloni 6316 . . . . . . . 8 ((𝐴o suc 𝑦) ∈ On → Ord (𝐴o suc 𝑦))
2725, 26syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o suc 𝑦))
28 id 22 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ (On ∖ 2o))
29 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
3029sucid 6390 . . . . . . . . 9 𝑦 ∈ suc 𝑦
31 oeordi 8502 . . . . . . . . 9 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦 ∈ suc 𝑦 → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦)))
3230, 31mpi 20 . . . . . . . 8 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
3323, 28, 32syl2anr 597 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
34 ordsucss 7748 . . . . . . 7 (Ord (𝐴o suc 𝑦) → ((𝐴o 𝑦) ∈ (𝐴o suc 𝑦) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
3527, 33, 34sylc 65 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))
36 sstr2 3936 . . . . . 6 (suc 𝑦 ⊆ suc (𝐴o 𝑦) → (suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3735, 36syl5com 31 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (suc 𝑦 ⊆ suc (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3822, 37sylbid 240 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3938expcom 413 . . 3 (𝑦 ∈ On → (𝐴 ∈ (On ∖ 2o) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦))))
40 dif20el 8420 . . . . 5 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
4116, 40jca 511 . . . 4 (𝐴 ∈ (On ∖ 2o) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
42 ss2iun 4958 . . . . . 6 (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦))
43 limuni 6368 . . . . . . . . 9 (Lim 𝑥𝑥 = 𝑥)
44 uniiun 5005 . . . . . . . . 9 𝑥 = 𝑦𝑥 𝑦
4543, 44eqtrdi 2782 . . . . . . . 8 (Lim 𝑥𝑥 = 𝑦𝑥 𝑦)
4645adantr 480 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 𝑥 = 𝑦𝑥 𝑦)
47 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
48 oelim 8449 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4947, 48mpanlr1 706 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5049anasss 466 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5150an12s 649 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5246, 51sseq12d 3963 . . . . . 6 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦)))
5342, 52imbitrrid 246 . . . . 5 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥)))
5453ex 412 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
5541, 54syl5 34 . . 3 (Lim 𝑥 → (𝐴 ∈ (On ∖ 2o) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
563, 6, 9, 12, 14, 39, 55tfinds3 7795 . 2 (𝐵 ∈ On → (𝐴 ∈ (On ∖ 2o) → 𝐵 ⊆ (𝐴o 𝐵)))
5756impcom 407 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3894  wss 3897  c0 4280   cuni 4856   ciun 4939  Ord word 6305  Oncon0 6306  Lim wlim 6307  suc csuc 6308  (class class class)co 7346  2oc2o 8379  o coe 8384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391
This theorem is referenced by:  oeeulem  8516  cnfcom3clem  9595  oege2  43399  nnoeomeqom  43404
  Copyright terms: Public domain W3C validator