MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Structured version   Visualization version   GIF version

Theorem oeworde 8386
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oeworde
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = ∅ → 𝑥 = ∅)
2 oveq2 7263 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
31, 2sseq12d 3950 . . 3 (𝑥 = ∅ → (𝑥 ⊆ (𝐴o 𝑥) ↔ ∅ ⊆ (𝐴o ∅)))
4 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 oveq2 7263 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
64, 5sseq12d 3950 . . 3 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦 ⊆ (𝐴o 𝑦)))
7 id 22 . . . 4 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
8 oveq2 7263 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
97, 8sseq12d 3950 . . 3 (𝑥 = suc 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ suc 𝑦 ⊆ (𝐴o suc 𝑦)))
10 id 22 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
11 oveq2 7263 . . . 4 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
1210, 11sseq12d 3950 . . 3 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝐵 ⊆ (𝐴o 𝐵)))
13 0ss 4327 . . . 4 ∅ ⊆ (𝐴o ∅)
1413a1i 11 . . 3 (𝐴 ∈ (On ∖ 2o) → ∅ ⊆ (𝐴o ∅))
15 eloni 6261 . . . . . 6 (𝑦 ∈ On → Ord 𝑦)
16 eldifi 4057 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
17 oecl 8329 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
1816, 17sylan 579 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
19 eloni 6261 . . . . . . 7 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o 𝑦))
21 ordsucsssuc 7645 . . . . . 6 ((Ord 𝑦 ∧ Ord (𝐴o 𝑦)) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
2215, 20, 21syl2an2 682 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
23 suceloni 7635 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
24 oecl 8329 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
2516, 23, 24syl2an 595 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
26 eloni 6261 . . . . . . . 8 ((𝐴o suc 𝑦) ∈ On → Ord (𝐴o suc 𝑦))
2725, 26syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o suc 𝑦))
28 id 22 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ (On ∖ 2o))
29 vex 3426 . . . . . . . . . 10 𝑦 ∈ V
3029sucid 6330 . . . . . . . . 9 𝑦 ∈ suc 𝑦
31 oeordi 8380 . . . . . . . . 9 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦 ∈ suc 𝑦 → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦)))
3230, 31mpi 20 . . . . . . . 8 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
3323, 28, 32syl2anr 596 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
34 ordsucss 7640 . . . . . . 7 (Ord (𝐴o suc 𝑦) → ((𝐴o 𝑦) ∈ (𝐴o suc 𝑦) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
3527, 33, 34sylc 65 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))
36 sstr2 3924 . . . . . 6 (suc 𝑦 ⊆ suc (𝐴o 𝑦) → (suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3735, 36syl5com 31 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (suc 𝑦 ⊆ suc (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3822, 37sylbid 239 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3938expcom 413 . . 3 (𝑦 ∈ On → (𝐴 ∈ (On ∖ 2o) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦))))
40 dif20el 8297 . . . . 5 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
4116, 40jca 511 . . . 4 (𝐴 ∈ (On ∖ 2o) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
42 ss2iun 4939 . . . . . 6 (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦))
43 limuni 6311 . . . . . . . . 9 (Lim 𝑥𝑥 = 𝑥)
44 uniiun 4984 . . . . . . . . 9 𝑥 = 𝑦𝑥 𝑦
4543, 44eqtrdi 2795 . . . . . . . 8 (Lim 𝑥𝑥 = 𝑦𝑥 𝑦)
4645adantr 480 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 𝑥 = 𝑦𝑥 𝑦)
47 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
48 oelim 8326 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4947, 48mpanlr1 702 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5049anasss 466 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5150an12s 645 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5246, 51sseq12d 3950 . . . . . 6 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦)))
5342, 52syl5ibr 245 . . . . 5 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥)))
5453ex 412 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
5541, 54syl5 34 . . 3 (Lim 𝑥 → (𝐴 ∈ (On ∖ 2o) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
563, 6, 9, 12, 14, 39, 55tfinds3 7686 . 2 (𝐵 ∈ On → (𝐴 ∈ (On ∖ 2o) → 𝐵 ⊆ (𝐴o 𝐵)))
5756impcom 407 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883  c0 4253   cuni 4836   ciun 4921  Ord word 6250  Oncon0 6251  Lim wlim 6252  suc csuc 6253  (class class class)co 7255  2oc2o 8261  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by:  oeeulem  8394  cnfcom3clem  9393
  Copyright terms: Public domain W3C validator