MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeworde Structured version   Visualization version   GIF version

Theorem oeworde 8234
Description: Ordinal exponentiation compared to its exponent. Proposition 8.37 of [TakeutiZaring] p. 68. (Contributed by NM, 7-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeworde ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))

Proof of Theorem oeworde
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝑥 = ∅ → 𝑥 = ∅)
2 oveq2 7163 . . . 4 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
31, 2sseq12d 3927 . . 3 (𝑥 = ∅ → (𝑥 ⊆ (𝐴o 𝑥) ↔ ∅ ⊆ (𝐴o ∅)))
4 id 22 . . . 4 (𝑥 = 𝑦𝑥 = 𝑦)
5 oveq2 7163 . . . 4 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
64, 5sseq12d 3927 . . 3 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦 ⊆ (𝐴o 𝑦)))
7 id 22 . . . 4 (𝑥 = suc 𝑦𝑥 = suc 𝑦)
8 oveq2 7163 . . . 4 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
97, 8sseq12d 3927 . . 3 (𝑥 = suc 𝑦 → (𝑥 ⊆ (𝐴o 𝑥) ↔ suc 𝑦 ⊆ (𝐴o suc 𝑦)))
10 id 22 . . . 4 (𝑥 = 𝐵𝑥 = 𝐵)
11 oveq2 7163 . . . 4 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
1210, 11sseq12d 3927 . . 3 (𝑥 = 𝐵 → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝐵 ⊆ (𝐴o 𝐵)))
13 0ss 4295 . . . 4 ∅ ⊆ (𝐴o ∅)
1413a1i 11 . . 3 (𝐴 ∈ (On ∖ 2o) → ∅ ⊆ (𝐴o ∅))
15 eloni 6183 . . . . . 6 (𝑦 ∈ On → Ord 𝑦)
16 eldifi 4034 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
17 oecl 8177 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
1816, 17sylan 583 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
19 eloni 6183 . . . . . . 7 ((𝐴o 𝑦) ∈ On → Ord (𝐴o 𝑦))
2018, 19syl 17 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o 𝑦))
21 ordsucsssuc 7542 . . . . . 6 ((Ord 𝑦 ∧ Ord (𝐴o 𝑦)) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
2215, 20, 21syl2an2 685 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) ↔ suc 𝑦 ⊆ suc (𝐴o 𝑦)))
23 suceloni 7532 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
24 oecl 8177 . . . . . . . . 9 ((𝐴 ∈ On ∧ suc 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
2516, 23, 24syl2an 598 . . . . . . . 8 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) ∈ On)
26 eloni 6183 . . . . . . . 8 ((𝐴o suc 𝑦) ∈ On → Ord (𝐴o suc 𝑦))
2725, 26syl 17 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → Ord (𝐴o suc 𝑦))
28 id 22 . . . . . . . 8 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ (On ∖ 2o))
29 vex 3413 . . . . . . . . . 10 𝑦 ∈ V
3029sucid 6252 . . . . . . . . 9 𝑦 ∈ suc 𝑦
31 oeordi 8228 . . . . . . . . 9 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑦 ∈ suc 𝑦 → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦)))
3230, 31mpi 20 . . . . . . . 8 ((suc 𝑦 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
3323, 28, 32syl2anr 599 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ (𝐴o suc 𝑦))
34 ordsucss 7537 . . . . . . 7 (Ord (𝐴o suc 𝑦) → ((𝐴o 𝑦) ∈ (𝐴o suc 𝑦) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦)))
3527, 33, 34sylc 65 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦))
36 sstr2 3901 . . . . . 6 (suc 𝑦 ⊆ suc (𝐴o 𝑦) → (suc (𝐴o 𝑦) ⊆ (𝐴o suc 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3735, 36syl5com 31 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (suc 𝑦 ⊆ suc (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3822, 37sylbid 243 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦)))
3938expcom 417 . . 3 (𝑦 ∈ On → (𝐴 ∈ (On ∖ 2o) → (𝑦 ⊆ (𝐴o 𝑦) → suc 𝑦 ⊆ (𝐴o suc 𝑦))))
40 dif20el 8145 . . . . 5 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
4116, 40jca 515 . . . 4 (𝐴 ∈ (On ∖ 2o) → (𝐴 ∈ On ∧ ∅ ∈ 𝐴))
42 ss2iun 4904 . . . . . 6 (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦))
43 limuni 6233 . . . . . . . . 9 (Lim 𝑥𝑥 = 𝑥)
44 uniiun 4950 . . . . . . . . 9 𝑥 = 𝑦𝑥 𝑦
4543, 44eqtrdi 2809 . . . . . . . 8 (Lim 𝑥𝑥 = 𝑦𝑥 𝑦)
4645adantr 484 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 𝑥 = 𝑦𝑥 𝑦)
47 vex 3413 . . . . . . . . . 10 𝑥 ∈ V
48 oelim 8174 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4947, 48mpanlr1 705 . . . . . . . . 9 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5049anasss 470 . . . . . . . 8 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5150an12s 648 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
5246, 51sseq12d 3927 . . . . . 6 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝑥 ⊆ (𝐴o 𝑥) ↔ 𝑦𝑥 𝑦 𝑦𝑥 (𝐴o 𝑦)))
5342, 52syl5ibr 249 . . . . 5 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥)))
5453ex 416 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
5541, 54syl5 34 . . 3 (Lim 𝑥 → (𝐴 ∈ (On ∖ 2o) → (∀𝑦𝑥 𝑦 ⊆ (𝐴o 𝑦) → 𝑥 ⊆ (𝐴o 𝑥))))
563, 6, 9, 12, 14, 39, 55tfinds3 7583 . 2 (𝐵 ∈ On → (𝐴 ∈ (On ∖ 2o) → 𝐵 ⊆ (𝐴o 𝐵)))
5756impcom 411 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  Vcvv 3409  cdif 3857  wss 3860  c0 4227   cuni 4801   ciun 4886  Ord word 6172  Oncon0 6173  Lim wlim 6174  suc csuc 6175  (class class class)co 7155  2oc2o 8111  o coe 8116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-2o 8118  df-oadd 8121  df-omul 8122  df-oexp 8123
This theorem is referenced by:  oeeulem  8242  cnfcom3clem  9206
  Copyright terms: Public domain W3C validator