MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordi Structured version   Visualization version   GIF version

Theorem oeordi 8380
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeordi ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))

Proof of Theorem oeordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7263 . . . . 5 (𝑥 = suc 𝐴 → (𝐶o 𝑥) = (𝐶o suc 𝐴))
21eleq2d 2824 . . . 4 (𝑥 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
32imbi2d 340 . . 3 (𝑥 = suc 𝐴 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
4 oveq2 7263 . . . . 5 (𝑥 = 𝑦 → (𝐶o 𝑥) = (𝐶o 𝑦))
54eleq2d 2824 . . . 4 (𝑥 = 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝑦)))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
7 oveq2 7263 . . . . 5 (𝑥 = suc 𝑦 → (𝐶o 𝑥) = (𝐶o suc 𝑦))
87eleq2d 2824 . . . 4 (𝑥 = suc 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
98imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
10 oveq2 7263 . . . . 5 (𝑥 = 𝐵 → (𝐶o 𝑥) = (𝐶o 𝐵))
1110eleq2d 2824 . . . 4 (𝑥 = 𝐵 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵))))
13 eldifi 4057 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On)
14 oecl 8329 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
1513, 14sylan 579 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
16 om1 8335 . . . . . . 7 ((𝐶o 𝐴) ∈ On → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
1715, 16syl 17 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
18 ondif2 8294 . . . . . . . . 9 (𝐶 ∈ (On ∖ 2o) ↔ (𝐶 ∈ On ∧ 1o𝐶))
1918simprbi 496 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 1o𝐶)
2019adantr 480 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 1o𝐶)
2113adantr 480 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐶 ∈ On)
22 simpr 484 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐴 ∈ On)
23 dif20el 8297 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 2o) → ∅ ∈ 𝐶)
2423adantr 480 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ 𝐶)
25 oen0 8379 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝐴))
2621, 22, 24, 25syl21anc 834 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ (𝐶o 𝐴))
27 omordi 8359 . . . . . . . 8 (((𝐶 ∈ On ∧ (𝐶o 𝐴) ∈ On) ∧ ∅ ∈ (𝐶o 𝐴)) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2821, 15, 26, 27syl21anc 834 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2920, 28mpd 15 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶))
3017, 29eqeltrrd 2840 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ ((𝐶o 𝐴) ·o 𝐶))
31 oesuc 8319 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3213, 31sylan 579 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3330, 32eleqtrrd 2842 . . . 4 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))
3433expcom 413 . . 3 (𝐴 ∈ On → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
35 oecl 8329 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
3613, 35sylan 579 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
37 om1 8335 . . . . . . . . . 10 ((𝐶o 𝑦) ∈ On → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3836, 37syl 17 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3919adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 1o𝐶)
4013adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝐶 ∈ On)
41 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝑦 ∈ On)
4223adantr 480 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ 𝐶)
43 oen0 8379 . . . . . . . . . . . 12 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝑦))
4440, 41, 42, 43syl21anc 834 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ (𝐶o 𝑦))
45 omordi 8359 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝐶o 𝑦) ∈ On) ∧ ∅ ∈ (𝐶o 𝑦)) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4640, 36, 44, 45syl21anc 834 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4739, 46mpd 15 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶))
4838, 47eqeltrrd 2840 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ ((𝐶o 𝑦) ·o 𝐶))
49 oesuc 8319 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5013, 49sylan 579 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5148, 50eleqtrrd 2842 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ (𝐶o suc 𝑦))
52 suceloni 7635 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
53 oecl 8329 . . . . . . . . 9 ((𝐶 ∈ On ∧ suc 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
5413, 52, 53syl2an 595 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
55 ontr1 6297 . . . . . . . 8 ((𝐶o suc 𝑦) ∈ On → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5654, 55syl 17 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5751, 56mpan2d 690 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5857expcom 413 . . . . 5 (𝑦 ∈ On → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
5958adantr 480 . . . 4 ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
6059a2d 29 . . 3 ((𝑦 ∈ On ∧ 𝐴𝑦) → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
61 bi2.04 388 . . . . . 6 ((𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6261ralbii 3090 . . . . 5 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ ∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
63 r19.21v 3100 . . . . 5 (∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6462, 63bitri 274 . . . 4 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
65 limsuc 7671 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6665biimpa 476 . . . . . . . . 9 ((Lim 𝑥𝐴𝑥) → suc 𝐴𝑥)
67 elex 3440 . . . . . . . . . . . . 13 (suc 𝐴𝑥 → suc 𝐴 ∈ V)
68 sucexb 7631 . . . . . . . . . . . . . 14 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
69 sucidg 6329 . . . . . . . . . . . . . 14 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7068, 69sylbir 234 . . . . . . . . . . . . 13 (suc 𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7167, 70syl 17 . . . . . . . . . . . 12 (suc 𝐴𝑥𝐴 ∈ suc 𝐴)
72 eleq2 2827 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → (𝐴𝑦𝐴 ∈ suc 𝐴))
73 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝐴 → (𝐶o 𝑦) = (𝐶o suc 𝐴))
7473eleq2d 2824 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7572, 74imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = suc 𝐴 → ((𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) ↔ (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7675rspcv 3547 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7771, 76mpid 44 . . . . . . . . . . 11 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7877anc2li 555 . . . . . . . . . 10 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7973eliuni 4927 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦))
8078, 79syl6 35 . . . . . . . . 9 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8166, 80syl 17 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8281adantr 480 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8313adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → 𝐶 ∈ On)
84 simpl 482 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → Lim 𝑥)
8523adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → ∅ ∈ 𝐶)
86 vex 3426 . . . . . . . . . . 11 𝑥 ∈ V
87 oelim 8326 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8886, 87mpanlr1 702 . . . . . . . . . 10 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8983, 84, 85, 88syl21anc 834 . . . . . . . . 9 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9089adantlr 711 . . . . . . . 8 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9190eleq2d 2824 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
9282, 91sylibrd 258 . . . . . 6 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)))
9392ex 412 . . . . 5 ((Lim 𝑥𝐴𝑥) → (𝐶 ∈ (On ∖ 2o) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9493a2d 29 . . . 4 ((Lim 𝑥𝐴𝑥) → ((𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9564, 94syl5bi 241 . . 3 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
963, 6, 9, 12, 34, 60, 95tfindsg2 7683 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
9796impancom 451 1 ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  c0 4253   ciun 4921  Oncon0 6251  Lim wlim 6252  suc csuc 6253  (class class class)co 7255  1oc1o 8260  2oc2o 8261   ·o comu 8265  o coe 8266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-oexp 8273
This theorem is referenced by:  oeord  8381  oecan  8382  oeworde  8386  oelimcl  8393
  Copyright terms: Public domain W3C validator