MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordi Structured version   Visualization version   GIF version

Theorem oeordi 8528
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeordi ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))

Proof of Theorem oeordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . 5 (𝑥 = suc 𝐴 → (𝐶o 𝑥) = (𝐶o suc 𝐴))
21eleq2d 2814 . . . 4 (𝑥 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
32imbi2d 340 . . 3 (𝑥 = suc 𝐴 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
4 oveq2 7377 . . . . 5 (𝑥 = 𝑦 → (𝐶o 𝑥) = (𝐶o 𝑦))
54eleq2d 2814 . . . 4 (𝑥 = 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝑦)))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
7 oveq2 7377 . . . . 5 (𝑥 = suc 𝑦 → (𝐶o 𝑥) = (𝐶o suc 𝑦))
87eleq2d 2814 . . . 4 (𝑥 = suc 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
98imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
10 oveq2 7377 . . . . 5 (𝑥 = 𝐵 → (𝐶o 𝑥) = (𝐶o 𝐵))
1110eleq2d 2814 . . . 4 (𝑥 = 𝐵 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵))))
13 eldifi 4090 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On)
14 oecl 8478 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
1513, 14sylan 580 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
16 om1 8483 . . . . . . 7 ((𝐶o 𝐴) ∈ On → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
1715, 16syl 17 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
18 ondif2 8443 . . . . . . . . 9 (𝐶 ∈ (On ∖ 2o) ↔ (𝐶 ∈ On ∧ 1o𝐶))
1918simprbi 496 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 1o𝐶)
2019adantr 480 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 1o𝐶)
2113adantr 480 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐶 ∈ On)
22 simpr 484 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐴 ∈ On)
23 dif20el 8446 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 2o) → ∅ ∈ 𝐶)
2423adantr 480 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ 𝐶)
25 oen0 8527 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝐴))
2621, 22, 24, 25syl21anc 837 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ (𝐶o 𝐴))
27 omordi 8507 . . . . . . . 8 (((𝐶 ∈ On ∧ (𝐶o 𝐴) ∈ On) ∧ ∅ ∈ (𝐶o 𝐴)) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2821, 15, 26, 27syl21anc 837 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2920, 28mpd 15 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶))
3017, 29eqeltrrd 2829 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ ((𝐶o 𝐴) ·o 𝐶))
31 oesuc 8468 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3213, 31sylan 580 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3330, 32eleqtrrd 2831 . . . 4 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))
3433expcom 413 . . 3 (𝐴 ∈ On → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
35 oecl 8478 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
3613, 35sylan 580 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
37 om1 8483 . . . . . . . . . 10 ((𝐶o 𝑦) ∈ On → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3836, 37syl 17 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3919adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 1o𝐶)
4013adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝐶 ∈ On)
41 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝑦 ∈ On)
4223adantr 480 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ 𝐶)
43 oen0 8527 . . . . . . . . . . . 12 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝑦))
4440, 41, 42, 43syl21anc 837 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ (𝐶o 𝑦))
45 omordi 8507 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝐶o 𝑦) ∈ On) ∧ ∅ ∈ (𝐶o 𝑦)) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4640, 36, 44, 45syl21anc 837 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4739, 46mpd 15 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶))
4838, 47eqeltrrd 2829 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ ((𝐶o 𝑦) ·o 𝐶))
49 oesuc 8468 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5013, 49sylan 580 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5148, 50eleqtrrd 2831 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ (𝐶o suc 𝑦))
52 onsuc 7767 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
53 oecl 8478 . . . . . . . . 9 ((𝐶 ∈ On ∧ suc 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
5413, 52, 53syl2an 596 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
55 ontr1 6367 . . . . . . . 8 ((𝐶o suc 𝑦) ∈ On → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5654, 55syl 17 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5751, 56mpan2d 694 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5857expcom 413 . . . . 5 (𝑦 ∈ On → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
5958adantr 480 . . . 4 ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
6059a2d 29 . . 3 ((𝑦 ∈ On ∧ 𝐴𝑦) → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
61 bi2.04 387 . . . . . 6 ((𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6261ralbii 3075 . . . . 5 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ ∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
63 r19.21v 3158 . . . . 5 (∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6462, 63bitri 275 . . . 4 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
65 limsuc 7805 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6665biimpa 476 . . . . . . . . 9 ((Lim 𝑥𝐴𝑥) → suc 𝐴𝑥)
67 elex 3465 . . . . . . . . . . . . 13 (suc 𝐴𝑥 → suc 𝐴 ∈ V)
68 sucexb 7760 . . . . . . . . . . . . . 14 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
69 sucidg 6403 . . . . . . . . . . . . . 14 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7068, 69sylbir 235 . . . . . . . . . . . . 13 (suc 𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7167, 70syl 17 . . . . . . . . . . . 12 (suc 𝐴𝑥𝐴 ∈ suc 𝐴)
72 eleq2 2817 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → (𝐴𝑦𝐴 ∈ suc 𝐴))
73 oveq2 7377 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝐴 → (𝐶o 𝑦) = (𝐶o suc 𝐴))
7473eleq2d 2814 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7572, 74imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = suc 𝐴 → ((𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) ↔ (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7675rspcv 3581 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7771, 76mpid 44 . . . . . . . . . . 11 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7877anc2li 555 . . . . . . . . . 10 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7973eliuni 4957 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦))
8078, 79syl6 35 . . . . . . . . 9 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8166, 80syl 17 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8281adantr 480 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8313adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → 𝐶 ∈ On)
84 simpl 482 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → Lim 𝑥)
8523adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → ∅ ∈ 𝐶)
86 vex 3448 . . . . . . . . . . 11 𝑥 ∈ V
87 oelim 8475 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8886, 87mpanlr1 706 . . . . . . . . . 10 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8983, 84, 85, 88syl21anc 837 . . . . . . . . 9 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9089adantlr 715 . . . . . . . 8 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9190eleq2d 2814 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
9282, 91sylibrd 259 . . . . . 6 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)))
9392ex 412 . . . . 5 ((Lim 𝑥𝐴𝑥) → (𝐶 ∈ (On ∖ 2o) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9493a2d 29 . . . 4 ((Lim 𝑥𝐴𝑥) → ((𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9564, 94biimtrid 242 . . 3 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
963, 6, 9, 12, 34, 60, 95tfindsg2 7818 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
9796impancom 451 1 ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3444  cdif 3908  c0 4292   ciun 4951  Oncon0 6320  Lim wlim 6321  suc csuc 6322  (class class class)co 7369  1oc1o 8404  2oc2o 8405   ·o comu 8409  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-oexp 8417
This theorem is referenced by:  oeord  8529  oecan  8530  oeworde  8534  oelimcl  8541  oeord2lim  43291  oeord2i  43292  omcl2  43315
  Copyright terms: Public domain W3C validator