MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordi Structured version   Visualization version   GIF version

Theorem oeordi 8418
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeordi ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))

Proof of Theorem oeordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . . 5 (𝑥 = suc 𝐴 → (𝐶o 𝑥) = (𝐶o suc 𝐴))
21eleq2d 2824 . . . 4 (𝑥 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
32imbi2d 341 . . 3 (𝑥 = suc 𝐴 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
4 oveq2 7283 . . . . 5 (𝑥 = 𝑦 → (𝐶o 𝑥) = (𝐶o 𝑦))
54eleq2d 2824 . . . 4 (𝑥 = 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝑦)))
65imbi2d 341 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
7 oveq2 7283 . . . . 5 (𝑥 = suc 𝑦 → (𝐶o 𝑥) = (𝐶o suc 𝑦))
87eleq2d 2824 . . . 4 (𝑥 = suc 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
98imbi2d 341 . . 3 (𝑥 = suc 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
10 oveq2 7283 . . . . 5 (𝑥 = 𝐵 → (𝐶o 𝑥) = (𝐶o 𝐵))
1110eleq2d 2824 . . . 4 (𝑥 = 𝐵 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
1211imbi2d 341 . . 3 (𝑥 = 𝐵 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵))))
13 eldifi 4061 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On)
14 oecl 8367 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
1513, 14sylan 580 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
16 om1 8373 . . . . . . 7 ((𝐶o 𝐴) ∈ On → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
1715, 16syl 17 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
18 ondif2 8332 . . . . . . . . 9 (𝐶 ∈ (On ∖ 2o) ↔ (𝐶 ∈ On ∧ 1o𝐶))
1918simprbi 497 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 1o𝐶)
2019adantr 481 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 1o𝐶)
2113adantr 481 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐶 ∈ On)
22 simpr 485 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐴 ∈ On)
23 dif20el 8335 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 2o) → ∅ ∈ 𝐶)
2423adantr 481 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ 𝐶)
25 oen0 8417 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝐴))
2621, 22, 24, 25syl21anc 835 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ (𝐶o 𝐴))
27 omordi 8397 . . . . . . . 8 (((𝐶 ∈ On ∧ (𝐶o 𝐴) ∈ On) ∧ ∅ ∈ (𝐶o 𝐴)) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2821, 15, 26, 27syl21anc 835 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2920, 28mpd 15 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶))
3017, 29eqeltrrd 2840 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ ((𝐶o 𝐴) ·o 𝐶))
31 oesuc 8357 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3213, 31sylan 580 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3330, 32eleqtrrd 2842 . . . 4 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))
3433expcom 414 . . 3 (𝐴 ∈ On → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
35 oecl 8367 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
3613, 35sylan 580 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
37 om1 8373 . . . . . . . . . 10 ((𝐶o 𝑦) ∈ On → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3836, 37syl 17 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3919adantr 481 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 1o𝐶)
4013adantr 481 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝐶 ∈ On)
41 simpr 485 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝑦 ∈ On)
4223adantr 481 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ 𝐶)
43 oen0 8417 . . . . . . . . . . . 12 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝑦))
4440, 41, 42, 43syl21anc 835 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ (𝐶o 𝑦))
45 omordi 8397 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝐶o 𝑦) ∈ On) ∧ ∅ ∈ (𝐶o 𝑦)) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4640, 36, 44, 45syl21anc 835 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4739, 46mpd 15 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶))
4838, 47eqeltrrd 2840 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ ((𝐶o 𝑦) ·o 𝐶))
49 oesuc 8357 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5013, 49sylan 580 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5148, 50eleqtrrd 2842 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ (𝐶o suc 𝑦))
52 suceloni 7659 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
53 oecl 8367 . . . . . . . . 9 ((𝐶 ∈ On ∧ suc 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
5413, 52, 53syl2an 596 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
55 ontr1 6312 . . . . . . . 8 ((𝐶o suc 𝑦) ∈ On → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5654, 55syl 17 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5751, 56mpan2d 691 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5857expcom 414 . . . . 5 (𝑦 ∈ On → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
5958adantr 481 . . . 4 ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
6059a2d 29 . . 3 ((𝑦 ∈ On ∧ 𝐴𝑦) → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
61 bi2.04 389 . . . . . 6 ((𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6261ralbii 3092 . . . . 5 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ ∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
63 r19.21v 3113 . . . . 5 (∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6462, 63bitri 274 . . . 4 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
65 limsuc 7696 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6665biimpa 477 . . . . . . . . 9 ((Lim 𝑥𝐴𝑥) → suc 𝐴𝑥)
67 elex 3450 . . . . . . . . . . . . 13 (suc 𝐴𝑥 → suc 𝐴 ∈ V)
68 sucexb 7654 . . . . . . . . . . . . . 14 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
69 sucidg 6344 . . . . . . . . . . . . . 14 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7068, 69sylbir 234 . . . . . . . . . . . . 13 (suc 𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7167, 70syl 17 . . . . . . . . . . . 12 (suc 𝐴𝑥𝐴 ∈ suc 𝐴)
72 eleq2 2827 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → (𝐴𝑦𝐴 ∈ suc 𝐴))
73 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝐴 → (𝐶o 𝑦) = (𝐶o suc 𝐴))
7473eleq2d 2824 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7572, 74imbi12d 345 . . . . . . . . . . . . 13 (𝑦 = suc 𝐴 → ((𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) ↔ (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7675rspcv 3557 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7771, 76mpid 44 . . . . . . . . . . 11 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7877anc2li 556 . . . . . . . . . 10 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7973eliuni 4930 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦))
8078, 79syl6 35 . . . . . . . . 9 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8166, 80syl 17 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8281adantr 481 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8313adantl 482 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → 𝐶 ∈ On)
84 simpl 483 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → Lim 𝑥)
8523adantl 482 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → ∅ ∈ 𝐶)
86 vex 3436 . . . . . . . . . . 11 𝑥 ∈ V
87 oelim 8364 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8886, 87mpanlr1 703 . . . . . . . . . 10 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8983, 84, 85, 88syl21anc 835 . . . . . . . . 9 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9089adantlr 712 . . . . . . . 8 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9190eleq2d 2824 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
9282, 91sylibrd 258 . . . . . 6 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)))
9392ex 413 . . . . 5 ((Lim 𝑥𝐴𝑥) → (𝐶 ∈ (On ∖ 2o) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9493a2d 29 . . . 4 ((Lim 𝑥𝐴𝑥) → ((𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9564, 94syl5bi 241 . . 3 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
963, 6, 9, 12, 34, 60, 95tfindsg2 7708 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
9796impancom 452 1 ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  c0 4256   ciun 4924  Oncon0 6266  Lim wlim 6267  suc csuc 6268  (class class class)co 7275  1oc1o 8290  2oc2o 8291   ·o comu 8295  o coe 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303
This theorem is referenced by:  oeord  8419  oecan  8420  oeworde  8424  oelimcl  8431
  Copyright terms: Public domain W3C validator