MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeordi Structured version   Visualization version   GIF version

Theorem oeordi 8643
Description: Ordering law for ordinal exponentiation. Proposition 8.33 of [TakeutiZaring] p. 67. (Contributed by NM, 5-Jan-2005.) (Revised by Mario Carneiro, 24-May-2015.)
Assertion
Ref Expression
oeordi ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))

Proof of Theorem oeordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . 5 (𝑥 = suc 𝐴 → (𝐶o 𝑥) = (𝐶o suc 𝐴))
21eleq2d 2830 . . . 4 (𝑥 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
32imbi2d 340 . . 3 (𝑥 = suc 𝐴 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
4 oveq2 7456 . . . . 5 (𝑥 = 𝑦 → (𝐶o 𝑥) = (𝐶o 𝑦))
54eleq2d 2830 . . . 4 (𝑥 = 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝑦)))
65imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
7 oveq2 7456 . . . . 5 (𝑥 = suc 𝑦 → (𝐶o 𝑥) = (𝐶o suc 𝑦))
87eleq2d 2830 . . . 4 (𝑥 = suc 𝑦 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
98imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
10 oveq2 7456 . . . . 5 (𝑥 = 𝐵 → (𝐶o 𝑥) = (𝐶o 𝐵))
1110eleq2d 2830 . . . 4 (𝑥 = 𝐵 → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
1211imbi2d 340 . . 3 (𝑥 = 𝐵 → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵))))
13 eldifi 4154 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 𝐶 ∈ On)
14 oecl 8593 . . . . . . . 8 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
1513, 14sylan 579 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ On)
16 om1 8598 . . . . . . 7 ((𝐶o 𝐴) ∈ On → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
1715, 16syl 17 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) = (𝐶o 𝐴))
18 ondif2 8558 . . . . . . . . 9 (𝐶 ∈ (On ∖ 2o) ↔ (𝐶 ∈ On ∧ 1o𝐶))
1918simprbi 496 . . . . . . . 8 (𝐶 ∈ (On ∖ 2o) → 1o𝐶)
2019adantr 480 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 1o𝐶)
2113adantr 480 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐶 ∈ On)
22 simpr 484 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → 𝐴 ∈ On)
23 dif20el 8561 . . . . . . . . . 10 (𝐶 ∈ (On ∖ 2o) → ∅ ∈ 𝐶)
2423adantr 480 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ 𝐶)
25 oen0 8642 . . . . . . . . 9 (((𝐶 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝐴))
2621, 22, 24, 25syl21anc 837 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ∅ ∈ (𝐶o 𝐴))
27 omordi 8622 . . . . . . . 8 (((𝐶 ∈ On ∧ (𝐶o 𝐴) ∈ On) ∧ ∅ ∈ (𝐶o 𝐴)) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2821, 15, 26, 27syl21anc 837 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (1o𝐶 → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶)))
2920, 28mpd 15 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → ((𝐶o 𝐴) ·o 1o) ∈ ((𝐶o 𝐴) ·o 𝐶))
3017, 29eqeltrrd 2845 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ ((𝐶o 𝐴) ·o 𝐶))
31 oesuc 8583 . . . . . 6 ((𝐶 ∈ On ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3213, 31sylan 579 . . . . 5 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o suc 𝐴) = ((𝐶o 𝐴) ·o 𝐶))
3330, 32eleqtrrd 2847 . . . 4 ((𝐶 ∈ (On ∖ 2o) ∧ 𝐴 ∈ On) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))
3433expcom 413 . . 3 (𝐴 ∈ On → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
35 oecl 8593 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
3613, 35sylan 579 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ On)
37 om1 8598 . . . . . . . . . 10 ((𝐶o 𝑦) ∈ On → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3836, 37syl 17 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) = (𝐶o 𝑦))
3919adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 1o𝐶)
4013adantr 480 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝐶 ∈ On)
41 simpr 484 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → 𝑦 ∈ On)
4223adantr 480 . . . . . . . . . . . 12 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ 𝐶)
43 oen0 8642 . . . . . . . . . . . 12 (((𝐶 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ 𝐶) → ∅ ∈ (𝐶o 𝑦))
4440, 41, 42, 43syl21anc 837 . . . . . . . . . . 11 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ∅ ∈ (𝐶o 𝑦))
45 omordi 8622 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝐶o 𝑦) ∈ On) ∧ ∅ ∈ (𝐶o 𝑦)) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4640, 36, 44, 45syl21anc 837 . . . . . . . . . 10 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (1o𝐶 → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶)))
4739, 46mpd 15 . . . . . . . . 9 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝑦) ·o 1o) ∈ ((𝐶o 𝑦) ·o 𝐶))
4838, 47eqeltrrd 2845 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ ((𝐶o 𝑦) ·o 𝐶))
49 oesuc 8583 . . . . . . . . 9 ((𝐶 ∈ On ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5013, 49sylan 579 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) = ((𝐶o 𝑦) ·o 𝐶))
5148, 50eleqtrrd 2847 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o 𝑦) ∈ (𝐶o suc 𝑦))
52 onsuc 7847 . . . . . . . . 9 (𝑦 ∈ On → suc 𝑦 ∈ On)
53 oecl 8593 . . . . . . . . 9 ((𝐶 ∈ On ∧ suc 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
5413, 52, 53syl2an 595 . . . . . . . 8 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (𝐶o suc 𝑦) ∈ On)
55 ontr1 6441 . . . . . . . 8 ((𝐶o suc 𝑦) ∈ On → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5654, 55syl 17 . . . . . . 7 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → (((𝐶o 𝐴) ∈ (𝐶o 𝑦) ∧ (𝐶o 𝑦) ∈ (𝐶o suc 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5751, 56mpan2d 693 . . . . . 6 ((𝐶 ∈ (On ∖ 2o) ∧ 𝑦 ∈ On) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦)))
5857expcom 413 . . . . 5 (𝑦 ∈ On → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
5958adantr 480 . . . 4 ((𝑦 ∈ On ∧ 𝐴𝑦) → (𝐶 ∈ (On ∖ 2o) → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
6059a2d 29 . . 3 ((𝑦 ∈ On ∧ 𝐴𝑦) → ((𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o suc 𝑦))))
61 bi2.04 387 . . . . . 6 ((𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6261ralbii 3099 . . . . 5 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ ∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
63 r19.21v 3186 . . . . 5 (∀𝑦𝑥 (𝐶 ∈ (On ∖ 2o) → (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
6462, 63bitri 275 . . . 4 (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) ↔ (𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))))
65 limsuc 7886 . . . . . . . . . 10 (Lim 𝑥 → (𝐴𝑥 ↔ suc 𝐴𝑥))
6665biimpa 476 . . . . . . . . 9 ((Lim 𝑥𝐴𝑥) → suc 𝐴𝑥)
67 elex 3509 . . . . . . . . . . . . 13 (suc 𝐴𝑥 → suc 𝐴 ∈ V)
68 sucexb 7840 . . . . . . . . . . . . . 14 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
69 sucidg 6476 . . . . . . . . . . . . . 14 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7068, 69sylbir 235 . . . . . . . . . . . . 13 (suc 𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
7167, 70syl 17 . . . . . . . . . . . 12 (suc 𝐴𝑥𝐴 ∈ suc 𝐴)
72 eleq2 2833 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → (𝐴𝑦𝐴 ∈ suc 𝐴))
73 oveq2 7456 . . . . . . . . . . . . . . 15 (𝑦 = suc 𝐴 → (𝐶o 𝑦) = (𝐶o suc 𝐴))
7473eleq2d 2830 . . . . . . . . . . . . . 14 (𝑦 = suc 𝐴 → ((𝐶o 𝐴) ∈ (𝐶o 𝑦) ↔ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7572, 74imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = suc 𝐴 → ((𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) ↔ (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7675rspcv 3631 . . . . . . . . . . . 12 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐴 ∈ suc 𝐴 → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7771, 76mpid 44 . . . . . . . . . . 11 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)))
7877anc2li 555 . . . . . . . . . 10 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴))))
7973eliuni 5021 . . . . . . . . . 10 ((suc 𝐴𝑥 ∧ (𝐶o 𝐴) ∈ (𝐶o suc 𝐴)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦))
8078, 79syl6 35 . . . . . . . . 9 (suc 𝐴𝑥 → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8166, 80syl 17 . . . . . . . 8 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8281adantr 480 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
8313adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → 𝐶 ∈ On)
84 simpl 482 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → Lim 𝑥)
8523adantl 481 . . . . . . . . . 10 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → ∅ ∈ 𝐶)
86 vex 3492 . . . . . . . . . . 11 𝑥 ∈ V
87 oelim 8590 . . . . . . . . . . 11 (((𝐶 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8886, 87mpanlr1 705 . . . . . . . . . 10 (((𝐶 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐶) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
8983, 84, 85, 88syl21anc 837 . . . . . . . . 9 ((Lim 𝑥𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9089adantlr 714 . . . . . . . 8 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐶o 𝑥) = 𝑦𝑥 (𝐶o 𝑦))
9190eleq2d 2830 . . . . . . 7 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → ((𝐶o 𝐴) ∈ (𝐶o 𝑥) ↔ (𝐶o 𝐴) ∈ 𝑦𝑥 (𝐶o 𝑦)))
9282, 91sylibrd 259 . . . . . 6 (((Lim 𝑥𝐴𝑥) ∧ 𝐶 ∈ (On ∖ 2o)) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥)))
9392ex 412 . . . . 5 ((Lim 𝑥𝐴𝑥) → (𝐶 ∈ (On ∖ 2o) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦)) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9493a2d 29 . . . 4 ((Lim 𝑥𝐴𝑥) → ((𝐶 ∈ (On ∖ 2o) → ∀𝑦𝑥 (𝐴𝑦 → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
9564, 94biimtrid 242 . . 3 ((Lim 𝑥𝐴𝑥) → (∀𝑦𝑥 (𝐴𝑦 → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑦))) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝑥))))
963, 6, 9, 12, 34, 60, 95tfindsg2 7899 . 2 ((𝐵 ∈ On ∧ 𝐴𝐵) → (𝐶 ∈ (On ∖ 2o) → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
9796impancom 451 1 ((𝐵 ∈ On ∧ 𝐶 ∈ (On ∖ 2o)) → (𝐴𝐵 → (𝐶o 𝐴) ∈ (𝐶o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  c0 4352   ciun 5015  Oncon0 6395  Lim wlim 6396  suc csuc 6397  (class class class)co 7448  1oc1o 8515  2oc2o 8516   ·o comu 8520  o coe 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-oexp 8528
This theorem is referenced by:  oeord  8644  oecan  8645  oeworde  8649  oelimcl  8656  oeord2lim  43271  oeord2i  43272  omcl2  43295
  Copyright terms: Public domain W3C validator