MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omass Structured version   Visualization version   GIF version

Theorem omass 8616
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. Theorem 4.4 of [Schloeder] p. 13. (Contributed by NM, 28-Dec-2004.)
Assertion
Ref Expression
omass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))

Proof of Theorem omass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7438 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o ∅))
2 oveq2 7438 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7446 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o ∅)))
41, 3eqeq12d 2750 . . . . 5 (𝑥 = ∅ → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅))))
5 oveq2 7438 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝑦))
6 oveq2 7438 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7446 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2750 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))))
9 oveq2 7438 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o suc 𝑦))
10 oveq2 7438 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7446 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2750 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
13 oveq2 7438 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝐶))
14 oveq2 7438 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7446 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2750 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
17 omcl 8572 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
18 om0 8553 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
1917, 18syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
20 om0 8553 . . . . . . . 8 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2120oveq2d 7446 . . . . . . 7 (𝐵 ∈ On → (𝐴 ·o (𝐵 ·o ∅)) = (𝐴 ·o ∅))
22 om0 8553 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2321, 22sylan9eqr 2796 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 ·o ∅)) = ∅)
2419, 23eqtr4d 2777 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅)))
25 oveq1 7437 . . . . . . . . 9 (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
26 omsuc 8562 . . . . . . . . . . 11 (((𝐴 ·o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
2717, 26stoic3 1772 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
28 omsuc 8562 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
29283adant1 1129 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3029oveq2d 7446 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)))
31 omcl 8572 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
32 odi 8615 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
3331, 32syl3an2 1163 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
34333exp 1118 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
3534expd 415 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐵 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3635com34 91 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3736pm2.43d 53 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
38373imp 1110 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
3930, 38eqtrd 2774 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
4027, 39eqeq12d 2750 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)) ↔ (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))
4125, 40imbitrrid 246 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
42413exp 1118 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4342com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4443impd 410 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))))
4517ancoms 458 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
46 vex 3481 . . . . . . . . . . . . . . 15 𝑥 ∈ V
47 omlim 8569 . . . . . . . . . . . . . . 15 (((𝐴 ·o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
4846, 47mpanr1 703 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
4945, 48sylan 580 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ Lim 𝑥) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
5049an32s 652 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
5150ad2antrr 726 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
52 iuneq2 5015 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
53 limelon 6449 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5446, 53mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑥𝑥 ∈ On)
5554anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐵 ∈ On) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
5655ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
57 omordi 8602 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥)))
5856, 57sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥)))
59 ssid 4017 . . . . . . . . . . . . . . . . . . 19 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))
60 oveq2 7438 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) = (𝐴 ·o (𝐵 ·o 𝑦)))
6160sseq2d 4027 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 ·o 𝑦) → ((𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧) ↔ (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
6261rspcev 3621 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥) ∧ (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))) → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
6359, 62mpan2 691 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥) → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
6458, 63syl6 35 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧)))
6564ralrimiv 3142 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → ∀𝑦𝑥𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
66 iunss2 5053 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
6765, 66syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
6867adantlr 715 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
69 omcl 8572 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 ·o 𝑥) ∈ On)
7054, 69sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) ∈ On)
71 onelon 6410 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ·o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
7270, 71sylan 580 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
7372adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
74 omordlim 8613 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦))
7574ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
7646, 75mpanr1 703 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
7776ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
78 onelon 6410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
7954, 78sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
8079, 31sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
81 onelss 6427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ·o 𝑦) ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → 𝑧 ⊆ (𝐵 ·o 𝑦)))
82813ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑦) → 𝑧 ⊆ (𝐵 ·o 𝑦)))
83 omwordi 8607 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
8482, 83syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
85843exp 1118 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ On → ((𝐵 ·o 𝑦) ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8680, 85syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8786exp4d 433 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ On → (𝐵 ∈ On → (Lim 𝑥 → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))))
8887imp32 418 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8988com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝐴 ∈ On → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
9089imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))))
9190reximdvai 3162 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9277, 91syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9392exp31 419 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
9493imp4c 423 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9573, 94mpcom 38 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))
9695ralrimiva 3143 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 ·o 𝑥)∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))
97 iunss2 5053 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝐵 ·o 𝑥)∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
9896, 97syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
9998adantr 480 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
10068, 99eqssd 4012 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
101 omlimcl 8614 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝑥))
10246, 101mpanlr1 706 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝑥))
103 ovex 7463 . . . . . . . . . . . . . . . . 17 (𝐵 ·o 𝑥) ∈ V
104 omlim 8569 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ ((𝐵 ·o 𝑥) ∈ V ∧ Lim (𝐵 ·o 𝑥))) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
105103, 104mpanr1 703 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim (𝐵 ·o 𝑥)) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
106102, 105sylan2 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
107106ancoms 458 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) ∧ 𝐴 ∈ On) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
108107an32s 652 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
109100, 108eqtr4d 2777 . . . . . . . . . . . 12 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) = (𝐴 ·o (𝐵 ·o 𝑥)))
11052, 109sylan9eqr 2796 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑥)))
11151, 110eqtrd 2774 . . . . . . . . . 10 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))
112111exp31 419 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
113 eloni 6395 . . . . . . . . . . . . 13 (𝐵 ∈ On → Ord 𝐵)
114 ord0eln0 6440 . . . . . . . . . . . . . 14 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
115114necon2bbid 2981 . . . . . . . . . . . . 13 (Ord 𝐵 → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
116113, 115syl 17 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
117116ad2antrr 726 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
118 oveq2 7438 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
119118, 22sylan9eqr 2796 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
120119oveq1d 7445 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = (∅ ·o 𝑥))
121 om0r 8575 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (∅ ·o 𝑥) = ∅)
122120, 121sylan9eqr 2796 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 = ∅)) → ((𝐴 ·o 𝐵) ·o 𝑥) = ∅)
123122anassrs 467 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = ∅)
124 oveq1 7437 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐵 ·o 𝑥) = (∅ ·o 𝑥))
125124, 121sylan9eqr 2796 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐵 ·o 𝑥) = ∅)
126125oveq2d 7446 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o ∅))
127126, 22sylan9eq 2794 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 = ∅) ∧ 𝐴 ∈ On) → (𝐴 ·o (𝐵 ·o 𝑥)) = ∅)
128127an32s 652 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → (𝐴 ·o (𝐵 ·o 𝑥)) = ∅)
129123, 128eqtr4d 2777 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))
130129ex 412 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
13154, 130sylan 580 . . . . . . . . . . . 12 ((Lim 𝑥𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
132131adantll 714 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
133117, 132sylbird 260 . . . . . . . . . 10 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
134133a1dd 50 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
135112, 134pm2.61d 179 . . . . . . . 8 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
136135exp31 419 . . . . . . 7 (𝐵 ∈ On → (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))))
137136com3l 89 . . . . . 6 (Lim 𝑥 → (𝐴 ∈ On → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))))
138137impd 410 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
1394, 8, 12, 16, 24, 44, 138tfinds3 7885 . . . 4 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
140139expd 415 . . 3 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
141140com3l 89 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
1421413imp 1110 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  wrex 3067  Vcvv 3477  wss 3962  c0 4338   ciun 4995  Ord word 6384  Oncon0 6385  Lim wlim 6386  suc csuc 6387  (class class class)co 7430   +o coa 8501   ·o comu 8502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-omul 8509
This theorem is referenced by:  oeoalem  8632  omabs  8687
  Copyright terms: Public domain W3C validator