MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omass Structured version   Visualization version   GIF version

Theorem omass 8547
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. Theorem 4.4 of [Schloeder] p. 13. (Contributed by NM, 28-Dec-2004.)
Assertion
Ref Expression
omass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))

Proof of Theorem omass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o ∅))
2 oveq2 7398 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7406 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o ∅)))
41, 3eqeq12d 2746 . . . . 5 (𝑥 = ∅ → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅))))
5 oveq2 7398 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝑦))
6 oveq2 7398 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7406 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2746 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))))
9 oveq2 7398 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o suc 𝑦))
10 oveq2 7398 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7406 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2746 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
13 oveq2 7398 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝐶))
14 oveq2 7398 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7406 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2746 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
17 omcl 8503 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
18 om0 8484 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
1917, 18syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
20 om0 8484 . . . . . . . 8 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2120oveq2d 7406 . . . . . . 7 (𝐵 ∈ On → (𝐴 ·o (𝐵 ·o ∅)) = (𝐴 ·o ∅))
22 om0 8484 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2321, 22sylan9eqr 2787 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 ·o ∅)) = ∅)
2419, 23eqtr4d 2768 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅)))
25 oveq1 7397 . . . . . . . . 9 (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
26 omsuc 8493 . . . . . . . . . . 11 (((𝐴 ·o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
2717, 26stoic3 1776 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
28 omsuc 8493 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
29283adant1 1130 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3029oveq2d 7406 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)))
31 omcl 8503 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
32 odi 8546 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
3331, 32syl3an2 1164 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
34333exp 1119 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
3534expd 415 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐵 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3635com34 91 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3736pm2.43d 53 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
38373imp 1110 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
3930, 38eqtrd 2765 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
4027, 39eqeq12d 2746 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)) ↔ (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))
4125, 40imbitrrid 246 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
42413exp 1119 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4342com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4443impd 410 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))))
4517ancoms 458 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
46 vex 3454 . . . . . . . . . . . . . . 15 𝑥 ∈ V
47 omlim 8500 . . . . . . . . . . . . . . 15 (((𝐴 ·o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
4846, 47mpanr1 703 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
4945, 48sylan 580 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ Lim 𝑥) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
5049an32s 652 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
5150ad2antrr 726 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
52 iuneq2 4978 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
53 limelon 6400 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5446, 53mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑥𝑥 ∈ On)
5554anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐵 ∈ On) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
5655ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
57 omordi 8533 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥)))
5856, 57sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥)))
59 ssid 3972 . . . . . . . . . . . . . . . . . . 19 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))
60 oveq2 7398 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) = (𝐴 ·o (𝐵 ·o 𝑦)))
6160sseq2d 3982 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 ·o 𝑦) → ((𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧) ↔ (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
6261rspcev 3591 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥) ∧ (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))) → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
6359, 62mpan2 691 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥) → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
6458, 63syl6 35 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧)))
6564ralrimiv 3125 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → ∀𝑦𝑥𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
66 iunss2 5016 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
6765, 66syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
6867adantlr 715 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
69 omcl 8503 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 ·o 𝑥) ∈ On)
7054, 69sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) ∈ On)
71 onelon 6360 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ·o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
7270, 71sylan 580 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
7372adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
74 omordlim 8544 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦))
7574ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
7646, 75mpanr1 703 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
7776ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
78 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
7954, 78sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
8079, 31sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
81 onelss 6377 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ·o 𝑦) ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → 𝑧 ⊆ (𝐵 ·o 𝑦)))
82813ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑦) → 𝑧 ⊆ (𝐵 ·o 𝑦)))
83 omwordi 8538 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
8482, 83syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
85843exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ On → ((𝐵 ·o 𝑦) ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8680, 85syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8786exp4d 433 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ On → (𝐵 ∈ On → (Lim 𝑥 → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))))
8887imp32 418 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8988com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝐴 ∈ On → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
9089imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))))
9190reximdvai 3145 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9277, 91syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9392exp31 419 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
9493imp4c 423 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9573, 94mpcom 38 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))
9695ralrimiva 3126 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 ·o 𝑥)∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))
97 iunss2 5016 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝐵 ·o 𝑥)∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
9896, 97syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
9998adantr 480 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
10068, 99eqssd 3967 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
101 omlimcl 8545 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝑥))
10246, 101mpanlr1 706 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝑥))
103 ovex 7423 . . . . . . . . . . . . . . . . 17 (𝐵 ·o 𝑥) ∈ V
104 omlim 8500 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ ((𝐵 ·o 𝑥) ∈ V ∧ Lim (𝐵 ·o 𝑥))) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
105103, 104mpanr1 703 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim (𝐵 ·o 𝑥)) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
106102, 105sylan2 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
107106ancoms 458 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) ∧ 𝐴 ∈ On) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
108107an32s 652 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
109100, 108eqtr4d 2768 . . . . . . . . . . . 12 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) = (𝐴 ·o (𝐵 ·o 𝑥)))
11052, 109sylan9eqr 2787 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑥)))
11151, 110eqtrd 2765 . . . . . . . . . 10 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))
112111exp31 419 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
113 eloni 6345 . . . . . . . . . . . . 13 (𝐵 ∈ On → Ord 𝐵)
114 ord0eln0 6391 . . . . . . . . . . . . . 14 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
115114necon2bbid 2969 . . . . . . . . . . . . 13 (Ord 𝐵 → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
116113, 115syl 17 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
117116ad2antrr 726 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
118 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
119118, 22sylan9eqr 2787 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
120119oveq1d 7405 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = (∅ ·o 𝑥))
121 om0r 8506 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (∅ ·o 𝑥) = ∅)
122120, 121sylan9eqr 2787 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 = ∅)) → ((𝐴 ·o 𝐵) ·o 𝑥) = ∅)
123122anassrs 467 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = ∅)
124 oveq1 7397 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐵 ·o 𝑥) = (∅ ·o 𝑥))
125124, 121sylan9eqr 2787 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐵 ·o 𝑥) = ∅)
126125oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o ∅))
127126, 22sylan9eq 2785 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 = ∅) ∧ 𝐴 ∈ On) → (𝐴 ·o (𝐵 ·o 𝑥)) = ∅)
128127an32s 652 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → (𝐴 ·o (𝐵 ·o 𝑥)) = ∅)
129123, 128eqtr4d 2768 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))
130129ex 412 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
13154, 130sylan 580 . . . . . . . . . . . 12 ((Lim 𝑥𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
132131adantll 714 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
133117, 132sylbird 260 . . . . . . . . . 10 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
134133a1dd 50 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
135112, 134pm2.61d 179 . . . . . . . 8 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
136135exp31 419 . . . . . . 7 (𝐵 ∈ On → (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))))
137136com3l 89 . . . . . 6 (Lim 𝑥 → (𝐴 ∈ On → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))))
138137impd 410 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
1394, 8, 12, 16, 24, 44, 138tfinds3 7844 . . . 4 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
140139expd 415 . . 3 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
141140com3l 89 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
1421413imp 1110 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  c0 4299   ciun 4958  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  (class class class)co 7390   +o coa 8434   ·o comu 8435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442
This theorem is referenced by:  oeoalem  8563  omabs  8618
  Copyright terms: Public domain W3C validator