MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omass Structured version   Visualization version   GIF version

Theorem omass 8521
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. Theorem 4.4 of [Schloeder] p. 13. (Contributed by NM, 28-Dec-2004.)
Assertion
Ref Expression
omass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))

Proof of Theorem omass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o ∅))
2 oveq2 7377 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
32oveq2d 7385 . . . . . 6 (𝑥 = ∅ → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o ∅)))
41, 3eqeq12d 2745 . . . . 5 (𝑥 = ∅ → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅))))
5 oveq2 7377 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝑦))
6 oveq2 7377 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
76oveq2d 7385 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝑦)))
85, 7eqeq12d 2745 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))))
9 oveq2 7377 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o suc 𝑦))
10 oveq2 7377 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1110oveq2d 7385 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o suc 𝑦)))
129, 11eqeq12d 2745 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
13 oveq2 7377 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·o 𝐵) ·o 𝑥) = ((𝐴 ·o 𝐵) ·o 𝐶))
14 oveq2 7377 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐶))
1514oveq2d 7385 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o (𝐵 ·o 𝐶)))
1613, 15eqeq12d 2745 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)) ↔ ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
17 omcl 8477 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
18 om0 8458 . . . . . . 7 ((𝐴 ·o 𝐵) ∈ On → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
1917, 18syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o ∅) = ∅)
20 om0 8458 . . . . . . . 8 (𝐵 ∈ On → (𝐵 ·o ∅) = ∅)
2120oveq2d 7385 . . . . . . 7 (𝐵 ∈ On → (𝐴 ·o (𝐵 ·o ∅)) = (𝐴 ·o ∅))
22 om0 8458 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·o ∅) = ∅)
2321, 22sylan9eqr 2786 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o (𝐵 ·o ∅)) = ∅)
2419, 23eqtr4d 2767 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o ∅) = (𝐴 ·o (𝐵 ·o ∅)))
25 oveq1 7376 . . . . . . . . 9 (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
26 omsuc 8467 . . . . . . . . . . 11 (((𝐴 ·o 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
2717, 26stoic3 1776 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)))
28 omsuc 8467 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
29283adant1 1130 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
3029oveq2d 7385 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)))
31 omcl 8477 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·o 𝑦) ∈ On)
32 odi 8520 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
3331, 32syl3an2 1164 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
34333exp 1119 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
3534expd 415 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐵 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3635com34 91 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))))
3736pm2.43d 53 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))))
38373imp 1110 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o ((𝐵 ·o 𝑦) +o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
3930, 38eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·o (𝐵 ·o suc 𝑦)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵)))
4027, 39eqeq12d 2745 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)) ↔ (((𝐴 ·o 𝐵) ·o 𝑦) +o (𝐴 ·o 𝐵)) = ((𝐴 ·o (𝐵 ·o 𝑦)) +o (𝐴 ·o 𝐵))))
4125, 40imbitrrid 246 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))
42413exp 1119 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4342com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦))))))
4443impd 410 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o suc 𝑦) = (𝐴 ·o (𝐵 ·o suc 𝑦)))))
4517ancoms 458 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·o 𝐵) ∈ On)
46 vex 3448 . . . . . . . . . . . . . . 15 𝑥 ∈ V
47 omlim 8474 . . . . . . . . . . . . . . 15 (((𝐴 ·o 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
4846, 47mpanr1 703 . . . . . . . . . . . . . 14 (((𝐴 ·o 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
4945, 48sylan 580 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ Lim 𝑥) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
5049an32s 652 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
5150ad2antrr 726 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝐵) ·o 𝑥) = 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦))
52 iuneq2 4971 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
53 limelon 6385 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5446, 53mpan 690 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑥𝑥 ∈ On)
5554anim1i 615 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐵 ∈ On) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
5655ancoms 458 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
57 omordi 8507 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥)))
5856, 57sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥)))
59 ssid 3966 . . . . . . . . . . . . . . . . . . 19 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))
60 oveq2 7377 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) = (𝐴 ·o (𝐵 ·o 𝑦)))
6160sseq2d 3976 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 ·o 𝑦) → ((𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧) ↔ (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
6261rspcev 3585 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥) ∧ (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))) → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
6359, 62mpan2 691 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·o 𝑦) ∈ (𝐵 ·o 𝑥) → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
6458, 63syl6 35 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → ∃𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧)))
6564ralrimiv 3124 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → ∀𝑦𝑥𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧))
66 iunss2 5008 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o (𝐵 ·o 𝑦)) ⊆ (𝐴 ·o 𝑧) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
6765, 66syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
6867adantlr 715 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
69 omcl 8477 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 ·o 𝑥) ∈ On)
7054, 69sylan2 593 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·o 𝑥) ∈ On)
71 onelon 6345 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ·o 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
7270, 71sylan 580 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
7372adantlr 715 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → 𝑧 ∈ On)
74 omordlim 8518 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦))
7574ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
7646, 75mpanr1 703 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
7776ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦)))
78 onelon 6345 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
7954, 78sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
8079, 31sylan2 593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·o 𝑦) ∈ On)
81 onelss 6362 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ·o 𝑦) ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → 𝑧 ⊆ (𝐵 ·o 𝑦)))
82813ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑦) → 𝑧 ⊆ (𝐵 ·o 𝑦)))
83 omwordi 8512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
8482, 83syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ On ∧ (𝐵 ·o 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
85843exp 1119 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ On → ((𝐵 ·o 𝑦) ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8680, 85syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8786exp4d 433 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ On → (𝐵 ∈ On → (Lim 𝑥 → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))))
8887imp32 418 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
8988com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝐴 ∈ On → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
9089imp 406 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·o 𝑦) → (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))))
9190reximdvai 3144 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (∃𝑦𝑥 𝑧 ∈ (𝐵 ·o 𝑦) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9277, 91syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9392exp31 419 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·o 𝑥) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))))
9493imp4c 423 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦))))
9573, 94mpcom 38 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·o 𝑥)) → ∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))
9695ralrimiva 3125 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 ·o 𝑥)∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)))
97 iunss2 5008 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝐵 ·o 𝑥)∃𝑦𝑥 (𝐴 ·o 𝑧) ⊆ (𝐴 ·o (𝐵 ·o 𝑦)) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
9896, 97syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
9998adantr 480 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧) ⊆ 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)))
10068, 99eqssd 3961 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
101 omlimcl 8519 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝑥))
10246, 101mpanlr1 706 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝑥))
103 ovex 7402 . . . . . . . . . . . . . . . . 17 (𝐵 ·o 𝑥) ∈ V
104 omlim 8474 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ ((𝐵 ·o 𝑥) ∈ V ∧ Lim (𝐵 ·o 𝑥))) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
105103, 104mpanr1 703 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim (𝐵 ·o 𝑥)) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
106102, 105sylan2 593 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵)) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
107106ancoms 458 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) ∧ 𝐴 ∈ On) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
108107an32s 652 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴 ·o (𝐵 ·o 𝑥)) = 𝑧 ∈ (𝐵 ·o 𝑥)(𝐴 ·o 𝑧))
109100, 108eqtr4d 2767 . . . . . . . . . . . 12 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·o (𝐵 ·o 𝑦)) = (𝐴 ·o (𝐵 ·o 𝑥)))
11052, 109sylan9eqr 2786 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → 𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑥)))
11151, 110eqtrd 2764 . . . . . . . . . 10 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦))) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))
112111exp31 419 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
113 eloni 6330 . . . . . . . . . . . . 13 (𝐵 ∈ On → Ord 𝐵)
114 ord0eln0 6376 . . . . . . . . . . . . . 14 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
115114necon2bbid 2968 . . . . . . . . . . . . 13 (Ord 𝐵 → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
116113, 115syl 17 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
117116ad2antrr 726 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
118 oveq2 7377 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐴 ·o 𝐵) = (𝐴 ·o ∅))
119118, 22sylan9eqr 2786 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o 𝐵) = ∅)
120119oveq1d 7384 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = (∅ ·o 𝑥))
121 om0r 8480 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (∅ ·o 𝑥) = ∅)
122120, 121sylan9eqr 2786 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 = ∅)) → ((𝐴 ·o 𝐵) ·o 𝑥) = ∅)
123122anassrs 467 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = ∅)
124 oveq1 7376 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐵 ·o 𝑥) = (∅ ·o 𝑥))
125124, 121sylan9eqr 2786 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐵 ·o 𝑥) = ∅)
126125oveq2d 7385 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·o (𝐵 ·o 𝑥)) = (𝐴 ·o ∅))
127126, 22sylan9eq 2784 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 = ∅) ∧ 𝐴 ∈ On) → (𝐴 ·o (𝐵 ·o 𝑥)) = ∅)
128127an32s 652 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → (𝐴 ·o (𝐵 ·o 𝑥)) = ∅)
129123, 128eqtr4d 2767 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))
130129ex 412 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
13154, 130sylan 580 . . . . . . . . . . . 12 ((Lim 𝑥𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
132131adantll 714 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
133117, 132sylbird 260 . . . . . . . . . 10 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
134133a1dd 50 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
135112, 134pm2.61d 179 . . . . . . . 8 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))
136135exp31 419 . . . . . . 7 (𝐵 ∈ On → (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))))
137136com3l 89 . . . . . 6 (Lim 𝑥 → (𝐴 ∈ On → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥))))))
138137impd 410 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 ·o 𝐵) ·o 𝑦) = (𝐴 ·o (𝐵 ·o 𝑦)) → ((𝐴 ·o 𝐵) ·o 𝑥) = (𝐴 ·o (𝐵 ·o 𝑥)))))
1394, 8, 12, 16, 24, 44, 138tfinds3 7821 . . . 4 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶))))
140139expd 415 . . 3 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
141140com3l 89 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))))
1421413imp 1110 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·o 𝐵) ·o 𝐶) = (𝐴 ·o (𝐵 ·o 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911  c0 4292   ciun 4951  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322  (class class class)co 7369   +o coa 8408   ·o comu 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416
This theorem is referenced by:  oeoalem  8537  omabs  8592
  Copyright terms: Public domain W3C validator