MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omass Structured version   Visualization version   GIF version

Theorem omass 7865
Description: Multiplication of ordinal numbers is associative. Theorem 8.26 of [TakeutiZaring] p. 65. (Contributed by NM, 28-Dec-2004.)
Assertion
Ref Expression
omass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))

Proof of Theorem omass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6850 . . . . . 6 (𝑥 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 ∅))
2 oveq2 6850 . . . . . . 7 (𝑥 = ∅ → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 ∅))
32oveq2d 6858 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
41, 3eqeq12d 2780 . . . . 5 (𝑥 = ∅ → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅))))
5 oveq2 6850 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
6 oveq2 6850 . . . . . . 7 (𝑥 = 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝑦))
76oveq2d 6858 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
85, 7eqeq12d 2780 . . . . 5 (𝑥 = 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9 oveq2 6850 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦))
10 oveq2 6850 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 suc 𝑦))
1110oveq2d 6858 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))
129, 11eqeq12d 2780 . . . . 5 (𝑥 = suc 𝑦 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
13 oveq2 6850 . . . . . 6 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶))
14 oveq2 6850 . . . . . . 7 (𝑥 = 𝐶 → (𝐵 ·𝑜 𝑥) = (𝐵 ·𝑜 𝐶))
1514oveq2d 6858 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
1613, 15eqeq12d 2780 . . . . 5 (𝑥 = 𝐶 → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) ↔ ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
17 omcl 7821 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
18 om0 7802 . . . . . . 7 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
1917, 18syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = ∅)
20 om0 7802 . . . . . . . 8 (𝐵 ∈ On → (𝐵 ·𝑜 ∅) = ∅)
2120oveq2d 6858 . . . . . . 7 (𝐵 ∈ On → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = (𝐴 ·𝑜 ∅))
22 om0 7802 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
2321, 22sylan9eqr 2821 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)) = ∅)
2419, 23eqtr4d 2802 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 ∅) = (𝐴 ·𝑜 (𝐵 ·𝑜 ∅)))
25 oveq1 6849 . . . . . . . . 9 (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
26 omsuc 7811 . . . . . . . . . . 11 (((𝐴 ·𝑜 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
2717, 26stoic3 1871 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)))
28 omsuc 7811 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
29283adant1 1160 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 suc 𝑦) = ((𝐵 ·𝑜 𝑦) +𝑜 𝐵))
3029oveq2d 6858 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)))
31 omcl 7821 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ·𝑜 𝑦) ∈ On)
32 odi 7864 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
3331, 32syl3an2 1203 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
34333exp 1148 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
3534expd 404 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐵 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3635com34 91 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))))
3736pm2.43d 53 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))))
38373imp 1137 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 ((𝐵 ·𝑜 𝑦) +𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
3930, 38eqtrd 2799 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵)))
4027, 39eqeq12d 2780 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)) ↔ (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) +𝑜 (𝐴 ·𝑜 𝐵)) = ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) +𝑜 (𝐴 ·𝑜 𝐵))))
4125, 40syl5ibr 237 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))
42413exp 1148 . . . . . . 7 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4342com3r 87 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦))))))
4443impd 398 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 suc 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 suc 𝑦)))))
4517ancoms 450 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
46 vex 3353 . . . . . . . . . . . . . . 15 𝑥 ∈ V
47 omlim 7818 . . . . . . . . . . . . . . 15 (((𝐴 ·𝑜 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
4846, 47mpanr1 694 . . . . . . . . . . . . . 14 (((𝐴 ·𝑜 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
4945, 48sylan 575 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ Lim 𝑥) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
5049an32s 642 . . . . . . . . . . . 12 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
5150ad2antrr 717 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦))
52 iuneq2 4693 . . . . . . . . . . . 12 (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
53 limelon 5971 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5446, 53mpan 681 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑥𝑥 ∈ On)
5554anim1i 608 . . . . . . . . . . . . . . . . . . . 20 ((Lim 𝑥𝐵 ∈ On) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
5655ancoms 450 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑥 ∈ On ∧ 𝐵 ∈ On))
57 omordi 7851 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥)))
5856, 57sylan 575 . . . . . . . . . . . . . . . . . 18 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → (𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥)))
59 ssid 3783 . . . . . . . . . . . . . . . . . . 19 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))
60 oveq2 6850 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
6160sseq2d 3793 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 ·𝑜 𝑦) → ((𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧) ↔ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
6261rspcev 3461 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
6359, 62mpan2 682 . . . . . . . . . . . . . . . . . 18 ((𝐵 ·𝑜 𝑦) ∈ (𝐵 ·𝑜 𝑥) → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
6458, 63syl6 35 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → (𝑦𝑥 → ∃𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧)))
6564ralrimiv 3112 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → ∀𝑦𝑥𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧))
66 iunss2 4721 . . . . . . . . . . . . . . . 16 (∀𝑦𝑥𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ (𝐴 ·𝑜 𝑧) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
6765, 66syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
6867adantlr 706 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
69 omcl 7821 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 ·𝑜 𝑥) ∈ On)
7054, 69sylan2 586 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐵 ·𝑜 𝑥) ∈ On)
71 onelon 5933 . . . . . . . . . . . . . . . . . . . 20 (((𝐵 ·𝑜 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
7270, 71sylan 575 . . . . . . . . . . . . . . . . . . 19 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
7372adantlr 706 . . . . . . . . . . . . . . . . . 18 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → 𝑧 ∈ On)
74 omordlim 7862 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦))
7574ex 401 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
7646, 75mpanr1 694 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 ∈ On ∧ Lim 𝑥) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
7776ad2antlr 718 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦)))
78 onelon 5933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
7954, 78sylan 575 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥𝑦𝑥) → 𝑦 ∈ On)
8079, 31sylan2 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐵 ·𝑜 𝑦) ∈ On)
81 onelss 5950 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ·𝑜 𝑦) ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → 𝑧 ⊆ (𝐵 ·𝑜 𝑦)))
82813ad2ant2 1164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → 𝑧 ⊆ (𝐵 ·𝑜 𝑦)))
83 omwordi 7856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
8482, 83syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ On ∧ (𝐵 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
85843exp 1148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ On → ((𝐵 ·𝑜 𝑦) ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8680, 85syl5 34 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ On → ((𝐵 ∈ On ∧ (Lim 𝑥𝑦𝑥)) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8786exp4d 424 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ On → (𝐵 ∈ On → (Lim 𝑥 → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))))
8887imp32 409 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝑦𝑥 → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
8988com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) → (𝐴 ∈ On → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
9089imp 395 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑦𝑥 → (𝑧 ∈ (𝐵 ·𝑜 𝑦) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))))
9190reximdvai 3161 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (∃𝑦𝑥 𝑧 ∈ (𝐵 ·𝑜 𝑦) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9277, 91syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝑥)) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9392exp31 410 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → ((𝐵 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On → (𝑧 ∈ (𝐵 ·𝑜 𝑥) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))))
9493imp4c 414 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))))
9573, 94mpcom 38 . . . . . . . . . . . . . . . . 17 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ 𝑧 ∈ (𝐵 ·𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9695ralrimiva 3113 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 ·𝑜 𝑥)∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
97 iunss2 4721 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (𝐵 ·𝑜 𝑥)∃𝑦𝑥 (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9896, 97syl 17 . . . . . . . . . . . . . . 15 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
9998adantr 472 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)))
10068, 99eqssd 3778 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
101 omlimcl 7863 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·𝑜 𝑥))
10246, 101mpanlr1 697 . . . . . . . . . . . . . . . 16 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·𝑜 𝑥))
103 ovex 6874 . . . . . . . . . . . . . . . . 17 (𝐵 ·𝑜 𝑥) ∈ V
104 omlim 7818 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ ((𝐵 ·𝑜 𝑥) ∈ V ∧ Lim (𝐵 ·𝑜 𝑥))) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
105103, 104mpanr1 694 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim (𝐵 ·𝑜 𝑥)) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
106102, 105sylan2 586 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ ((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵)) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
107106ancoms 450 . . . . . . . . . . . . . 14 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐵) ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
108107an32s 642 . . . . . . . . . . . . 13 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = 𝑧 ∈ (𝐵 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧))
109100, 108eqtr4d 2802 . . . . . . . . . . . 12 ((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) → 𝑦𝑥 (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
11052, 109sylan9eqr 2821 . . . . . . . . . . 11 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → 𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
11151, 110eqtrd 2799 . . . . . . . . . 10 (((((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐵) ∧ ∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦))) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
112111exp31 410 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
113 eloni 5918 . . . . . . . . . . . . 13 (𝐵 ∈ On → Ord 𝐵)
114 ord0eln0 5962 . . . . . . . . . . . . . 14 (Ord 𝐵 → (∅ ∈ 𝐵𝐵 ≠ ∅))
115114necon2bbid 2980 . . . . . . . . . . . . 13 (Ord 𝐵 → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
116113, 115syl 17 . . . . . . . . . . . 12 (𝐵 ∈ On → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
117116ad2antrr 717 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ ↔ ¬ ∅ ∈ 𝐵))
118 oveq2 6850 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐴 ·𝑜 𝐵) = (𝐴 ·𝑜 ∅))
119118, 22sylan9eqr 2821 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·𝑜 𝐵) = ∅)
120119oveq1d 6857 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
121 om0r 7824 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (∅ ·𝑜 𝑥) = ∅)
122120, 121sylan9eqr 2821 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 = ∅)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ∅)
123122anassrs 459 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = ∅)
124 oveq1 6849 . . . . . . . . . . . . . . . . . . 19 (𝐵 = ∅ → (𝐵 ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
125124, 121sylan9eqr 2821 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐵 ·𝑜 𝑥) = ∅)
126125oveq2d 6858 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 = ∅) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = (𝐴 ·𝑜 ∅))
127126, 22sylan9eq 2819 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ On ∧ 𝐵 = ∅) ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = ∅)
128127an32s 642 . . . . . . . . . . . . . . 15 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)) = ∅)
129123, 128eqtr4d 2802 . . . . . . . . . . . . . 14 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 = ∅) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))
130129ex 401 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
13154, 130sylan 575 . . . . . . . . . . . 12 ((Lim 𝑥𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
132131adantll 705 . . . . . . . . . . 11 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (𝐵 = ∅ → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
133117, 132sylbird 251 . . . . . . . . . 10 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
134133a1dd 50 . . . . . . . . 9 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (¬ ∅ ∈ 𝐵 → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
135112, 134pm2.61d 171 . . . . . . . 8 (((𝐵 ∈ On ∧ Lim 𝑥) ∧ 𝐴 ∈ On) → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))
136135exp31 410 . . . . . . 7 (𝐵 ∈ On → (Lim 𝑥 → (𝐴 ∈ On → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))))
137136com3l 89 . . . . . 6 (Lim 𝑥 → (𝐴 ∈ On → (𝐵 ∈ On → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥))))))
138137impd 398 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 ·𝑜 𝐵) ·𝑜 𝑦) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑦)) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝑥) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝑥)))))
1394, 8, 12, 16, 24, 44, 138tfinds3 7262 . . . 4 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶))))
140139expd 404 . . 3 (𝐶 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
141140com3l 89 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))))
1421413imp 1137 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ·𝑜 𝐵) ·𝑜 𝐶) = (𝐴 ·𝑜 (𝐵 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  wrex 3056  Vcvv 3350  wss 3732  c0 4079   ciun 4676  Ord word 5907  Oncon0 5908  Lim wlim 5909  suc csuc 5910  (class class class)co 6842   +𝑜 coa 7761   ·𝑜 comu 7762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-omul 7769
This theorem is referenced by:  oeoalem  7881  omabs  7932
  Copyright terms: Public domain W3C validator