MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oecl Structured version   Visualization version   GIF version

Theorem oecl 8504
Description: Closure law for ordinal exponentiation. Remark 2.8 of [Schloeder] p. 5. (Contributed by NM, 1-Jan-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
oecl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)

Proof of Theorem oecl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7398 . . . . . . . 8 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8487 . . . . . . . . 9 (∅ ↑o ∅) = 1o
3 1on 8449 . . . . . . . . 9 1o ∈ On
42, 3eqeltri 2825 . . . . . . . 8 (∅ ↑o ∅) ∈ On
51, 4eqeltrdi 2837 . . . . . . 7 (𝐵 = ∅ → (∅ ↑o 𝐵) ∈ On)
65adantl 481 . . . . . 6 ((𝐵 ∈ On ∧ 𝐵 = ∅) → (∅ ↑o 𝐵) ∈ On)
7 oe0m1 8488 . . . . . . . . 9 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
87biimpa 476 . . . . . . . 8 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
9 0elon 6390 . . . . . . . 8 ∅ ∈ On
108, 9eqeltrdi 2837 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
1110adantll 714 . . . . . 6 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
126, 11oe0lem 8480 . . . . 5 ((𝐵 ∈ On ∧ 𝐵 ∈ On) → (∅ ↑o 𝐵) ∈ On)
1312anidms 566 . . . 4 (𝐵 ∈ On → (∅ ↑o 𝐵) ∈ On)
14 oveq1 7397 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
1514eleq1d 2814 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) ∈ On ↔ (∅ ↑o 𝐵) ∈ On))
1613, 15imbitrrid 246 . . 3 (𝐴 = ∅ → (𝐵 ∈ On → (𝐴o 𝐵) ∈ On))
1716impcom 407 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) ∈ On)
18 oveq2 7398 . . . . . . 7 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
1918eleq1d 2814 . . . . . 6 (𝑥 = ∅ → ((𝐴o 𝑥) ∈ On ↔ (𝐴o ∅) ∈ On))
20 oveq2 7398 . . . . . . 7 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
2120eleq1d 2814 . . . . . 6 (𝑥 = 𝑦 → ((𝐴o 𝑥) ∈ On ↔ (𝐴o 𝑦) ∈ On))
22 oveq2 7398 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
2322eleq1d 2814 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ∈ On ↔ (𝐴o suc 𝑦) ∈ On))
24 oveq2 7398 . . . . . . 7 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
2524eleq1d 2814 . . . . . 6 (𝑥 = 𝐵 → ((𝐴o 𝑥) ∈ On ↔ (𝐴o 𝐵) ∈ On))
26 oe0 8489 . . . . . . . 8 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2726, 3eqeltrdi 2837 . . . . . . 7 (𝐴 ∈ On → (𝐴o ∅) ∈ On)
2827adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) ∈ On)
29 omcl 8503 . . . . . . . . . . 11 (((𝐴o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝑦) ·o 𝐴) ∈ On)
3029expcom 413 . . . . . . . . . 10 (𝐴 ∈ On → ((𝐴o 𝑦) ∈ On → ((𝐴o 𝑦) ·o 𝐴) ∈ On))
3130adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝑦) ∈ On → ((𝐴o 𝑦) ·o 𝐴) ∈ On))
32 oesuc 8494 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
3332eleq1d 2814 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o suc 𝑦) ∈ On ↔ ((𝐴o 𝑦) ·o 𝐴) ∈ On))
3431, 33sylibrd 259 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝑦) ∈ On → (𝐴o suc 𝑦) ∈ On))
3534expcom 413 . . . . . . 7 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴o 𝑦) ∈ On → (𝐴o suc 𝑦) ∈ On)))
3635adantrd 491 . . . . . 6 (𝑦 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((𝐴o 𝑦) ∈ On → (𝐴o suc 𝑦) ∈ On)))
37 vex 3454 . . . . . . . . 9 𝑥 ∈ V
38 iunon 8311 . . . . . . . . 9 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴o 𝑦) ∈ On) → 𝑦𝑥 (𝐴o 𝑦) ∈ On)
3937, 38mpan 690 . . . . . . . 8 (∀𝑦𝑥 (𝐴o 𝑦) ∈ On → 𝑦𝑥 (𝐴o 𝑦) ∈ On)
40 oelim 8501 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4137, 40mpanlr1 706 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4241anasss 466 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4342an12s 649 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4443eleq1d 2814 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → ((𝐴o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴o 𝑦) ∈ On))
4539, 44imbitrrid 246 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 (𝐴o 𝑦) ∈ On → (𝐴o 𝑥) ∈ On))
4645ex 412 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 (𝐴o 𝑦) ∈ On → (𝐴o 𝑥) ∈ On)))
4719, 21, 23, 25, 28, 36, 46tfinds3 7844 . . . . 5 (𝐵 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) ∈ On))
4847expd 415 . . . 4 (𝐵 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → (𝐴o 𝐵) ∈ On)))
4948com12 32 . . 3 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝐴o 𝐵) ∈ On)))
5049imp31 417 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) ∈ On)
5117, 50oe0lem 8480 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  c0 4299   ciun 4958  Oncon0 6335  Lim wlim 6336  suc csuc 6337  (class class class)co 7390  1oc1o 8430   ·o comu 8435  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by:  oen0  8553  oeordi  8554  oeord  8555  oecan  8556  oeword  8557  oewordri  8559  oeworde  8560  oeordsuc  8561  oeoalem  8563  oeoa  8564  oeoelem  8565  oeoe  8566  oelimcl  8567  oeeulem  8568  oeeui  8569  oaabs2  8616  omabs  8618  cantnfle  9631  cantnflt  9632  cantnfp1  9641  cantnflem1d  9648  cantnflem1  9649  cantnflem2  9650  cantnflem3  9651  cantnflem4  9652  cantnf  9653  oemapwe  9654  cantnffval2  9655  cnfcomlem  9659  cnfcom  9660  cnfcom3lem  9663  cnfcom3  9664  infxpenc  9978  onexoegt  43240  oaomoecl  43274  oenassex  43314  cantnftermord  43316  cantnfresb  43320  oacl2g  43326  omabs2  43328  omcl2  43329  ofoaf  43351  ofoafo  43352
  Copyright terms: Public domain W3C validator