MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oecl Structured version   Visualization version   GIF version

Theorem oecl 8367
Description: Closure law for ordinal exponentiation. (Contributed by NM, 1-Jan-2005.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
oecl ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)

Proof of Theorem oecl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . . . . . 8 (𝐵 = ∅ → (∅ ↑o 𝐵) = (∅ ↑o ∅))
2 oe0m0 8350 . . . . . . . . 9 (∅ ↑o ∅) = 1o
3 1on 8309 . . . . . . . . 9 1o ∈ On
42, 3eqeltri 2835 . . . . . . . 8 (∅ ↑o ∅) ∈ On
51, 4eqeltrdi 2847 . . . . . . 7 (𝐵 = ∅ → (∅ ↑o 𝐵) ∈ On)
65adantl 482 . . . . . 6 ((𝐵 ∈ On ∧ 𝐵 = ∅) → (∅ ↑o 𝐵) ∈ On)
7 oe0m1 8351 . . . . . . . . 9 (𝐵 ∈ On → (∅ ∈ 𝐵 ↔ (∅ ↑o 𝐵) = ∅))
87biimpa 477 . . . . . . . 8 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) = ∅)
9 0elon 6319 . . . . . . . 8 ∅ ∈ On
108, 9eqeltrdi 2847 . . . . . . 7 ((𝐵 ∈ On ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
1110adantll 711 . . . . . 6 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐵) → (∅ ↑o 𝐵) ∈ On)
126, 11oe0lem 8343 . . . . 5 ((𝐵 ∈ On ∧ 𝐵 ∈ On) → (∅ ↑o 𝐵) ∈ On)
1312anidms 567 . . . 4 (𝐵 ∈ On → (∅ ↑o 𝐵) ∈ On)
14 oveq1 7282 . . . . 5 (𝐴 = ∅ → (𝐴o 𝐵) = (∅ ↑o 𝐵))
1514eleq1d 2823 . . . 4 (𝐴 = ∅ → ((𝐴o 𝐵) ∈ On ↔ (∅ ↑o 𝐵) ∈ On))
1613, 15syl5ibr 245 . . 3 (𝐴 = ∅ → (𝐵 ∈ On → (𝐴o 𝐵) ∈ On))
1716impcom 408 . 2 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴o 𝐵) ∈ On)
18 oveq2 7283 . . . . . . 7 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
1918eleq1d 2823 . . . . . 6 (𝑥 = ∅ → ((𝐴o 𝑥) ∈ On ↔ (𝐴o ∅) ∈ On))
20 oveq2 7283 . . . . . . 7 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
2120eleq1d 2823 . . . . . 6 (𝑥 = 𝑦 → ((𝐴o 𝑥) ∈ On ↔ (𝐴o 𝑦) ∈ On))
22 oveq2 7283 . . . . . . 7 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
2322eleq1d 2823 . . . . . 6 (𝑥 = suc 𝑦 → ((𝐴o 𝑥) ∈ On ↔ (𝐴o suc 𝑦) ∈ On))
24 oveq2 7283 . . . . . . 7 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
2524eleq1d 2823 . . . . . 6 (𝑥 = 𝐵 → ((𝐴o 𝑥) ∈ On ↔ (𝐴o 𝐵) ∈ On))
26 oe0 8352 . . . . . . . 8 (𝐴 ∈ On → (𝐴o ∅) = 1o)
2726, 3eqeltrdi 2847 . . . . . . 7 (𝐴 ∈ On → (𝐴o ∅) ∈ On)
2827adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o ∅) ∈ On)
29 omcl 8366 . . . . . . . . . . 11 (((𝐴o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝑦) ·o 𝐴) ∈ On)
3029expcom 414 . . . . . . . . . 10 (𝐴 ∈ On → ((𝐴o 𝑦) ∈ On → ((𝐴o 𝑦) ·o 𝐴) ∈ On))
3130adantr 481 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝑦) ∈ On → ((𝐴o 𝑦) ·o 𝐴) ∈ On))
32 oesuc 8357 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
3332eleq1d 2823 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o suc 𝑦) ∈ On ↔ ((𝐴o 𝑦) ·o 𝐴) ∈ On))
3431, 33sylibrd 258 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴o 𝑦) ∈ On → (𝐴o suc 𝑦) ∈ On))
3534expcom 414 . . . . . . 7 (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴o 𝑦) ∈ On → (𝐴o suc 𝑦) ∈ On)))
3635adantrd 492 . . . . . 6 (𝑦 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ((𝐴o 𝑦) ∈ On → (𝐴o suc 𝑦) ∈ On)))
37 vex 3436 . . . . . . . . 9 𝑥 ∈ V
38 iunon 8170 . . . . . . . . 9 ((𝑥 ∈ V ∧ ∀𝑦𝑥 (𝐴o 𝑦) ∈ On) → 𝑦𝑥 (𝐴o 𝑦) ∈ On)
3937, 38mpan 687 . . . . . . . 8 (∀𝑦𝑥 (𝐴o 𝑦) ∈ On → 𝑦𝑥 (𝐴o 𝑦) ∈ On)
40 oelim 8364 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4137, 40mpanlr1 703 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4241anasss 467 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4342an12s 646 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4443eleq1d 2823 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → ((𝐴o 𝑥) ∈ On ↔ 𝑦𝑥 (𝐴o 𝑦) ∈ On))
4539, 44syl5ibr 245 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦𝑥 (𝐴o 𝑦) ∈ On → (𝐴o 𝑥) ∈ On))
4645ex 413 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 (𝐴o 𝑦) ∈ On → (𝐴o 𝑥) ∈ On)))
4719, 21, 23, 25, 28, 36, 46tfinds3 7711 . . . . 5 (𝐵 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) ∈ On))
4847expd 416 . . . 4 (𝐵 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → (𝐴o 𝐵) ∈ On)))
4948com12 32 . . 3 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → (𝐴o 𝐵) ∈ On)))
5049imp31 418 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝐴o 𝐵) ∈ On)
5117, 50oe0lem 8343 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴o 𝐵) ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  c0 4256   ciun 4924  Oncon0 6266  Lim wlim 6267  suc csuc 6268  (class class class)co 7275  1oc1o 8290   ·o comu 8295  o coe 8296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-oexp 8303
This theorem is referenced by:  oen0  8417  oeordi  8418  oeord  8419  oecan  8420  oeword  8421  oewordri  8423  oeworde  8424  oeordsuc  8425  oeoalem  8427  oeoa  8428  oeoelem  8429  oeoe  8430  oelimcl  8431  oeeulem  8432  oeeui  8433  oaabs2  8479  omabs  8481  cantnfle  9429  cantnflt  9430  cantnfp1  9439  cantnflem1d  9446  cantnflem1  9447  cantnflem2  9448  cantnflem3  9449  cantnflem4  9450  cantnf  9451  oemapwe  9452  cantnffval2  9453  cnfcomlem  9457  cnfcom  9458  cnfcom3lem  9461  cnfcom3  9462  infxpenc  9774
  Copyright terms: Public domain W3C validator