Step | Hyp | Ref
| Expression |
1 | | oveq2 7158 |
. . . . . . . 8
⊢ (𝐵 = ∅ → (∅
↑o 𝐵) =
(∅ ↑o ∅)) |
2 | | oe0m0 8155 |
. . . . . . . . 9
⊢ (∅
↑o ∅) = 1o |
3 | | 1on 8119 |
. . . . . . . . 9
⊢
1o ∈ On |
4 | 2, 3 | eqeltri 2848 |
. . . . . . . 8
⊢ (∅
↑o ∅) ∈ On |
5 | 1, 4 | eqeltrdi 2860 |
. . . . . . 7
⊢ (𝐵 = ∅ → (∅
↑o 𝐵)
∈ On) |
6 | 5 | adantl 485 |
. . . . . 6
⊢ ((𝐵 ∈ On ∧ 𝐵 = ∅) → (∅
↑o 𝐵)
∈ On) |
7 | | oe0m1 8156 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → (∅
∈ 𝐵 ↔ (∅
↑o 𝐵) =
∅)) |
8 | 7 | biimpa 480 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ ∅ ∈
𝐵) → (∅
↑o 𝐵) =
∅) |
9 | | 0elon 6222 |
. . . . . . . 8
⊢ ∅
∈ On |
10 | 8, 9 | eqeltrdi 2860 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ ∅ ∈
𝐵) → (∅
↑o 𝐵)
∈ On) |
11 | 10 | adantll 713 |
. . . . . 6
⊢ (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐵) → (∅
↑o 𝐵)
∈ On) |
12 | 6, 11 | oe0lem 8148 |
. . . . 5
⊢ ((𝐵 ∈ On ∧ 𝐵 ∈ On) → (∅
↑o 𝐵)
∈ On) |
13 | 12 | anidms 570 |
. . . 4
⊢ (𝐵 ∈ On → (∅
↑o 𝐵)
∈ On) |
14 | | oveq1 7157 |
. . . . 5
⊢ (𝐴 = ∅ → (𝐴 ↑o 𝐵) = (∅ ↑o
𝐵)) |
15 | 14 | eleq1d 2836 |
. . . 4
⊢ (𝐴 = ∅ → ((𝐴 ↑o 𝐵) ∈ On ↔ (∅
↑o 𝐵)
∈ On)) |
16 | 13, 15 | syl5ibr 249 |
. . 3
⊢ (𝐴 = ∅ → (𝐵 ∈ On → (𝐴 ↑o 𝐵) ∈ On)) |
17 | 16 | impcom 411 |
. 2
⊢ ((𝐵 ∈ On ∧ 𝐴 = ∅) → (𝐴 ↑o 𝐵) ∈ On) |
18 | | oveq2 7158 |
. . . . . . 7
⊢ (𝑥 = ∅ → (𝐴 ↑o 𝑥) = (𝐴 ↑o
∅)) |
19 | 18 | eleq1d 2836 |
. . . . . 6
⊢ (𝑥 = ∅ → ((𝐴 ↑o 𝑥) ∈ On ↔ (𝐴 ↑o ∅)
∈ On)) |
20 | | oveq2 7158 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝑦)) |
21 | 20 | eleq1d 2836 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 ↑o 𝑥) ∈ On ↔ (𝐴 ↑o 𝑦) ∈ On)) |
22 | | oveq2 7158 |
. . . . . . 7
⊢ (𝑥 = suc 𝑦 → (𝐴 ↑o 𝑥) = (𝐴 ↑o suc 𝑦)) |
23 | 22 | eleq1d 2836 |
. . . . . 6
⊢ (𝑥 = suc 𝑦 → ((𝐴 ↑o 𝑥) ∈ On ↔ (𝐴 ↑o suc 𝑦) ∈ On)) |
24 | | oveq2 7158 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝐴 ↑o 𝑥) = (𝐴 ↑o 𝐵)) |
25 | 24 | eleq1d 2836 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝐴 ↑o 𝑥) ∈ On ↔ (𝐴 ↑o 𝐵) ∈ On)) |
26 | | oe0 8157 |
. . . . . . . 8
⊢ (𝐴 ∈ On → (𝐴 ↑o ∅) =
1o) |
27 | 26, 3 | eqeltrdi 2860 |
. . . . . . 7
⊢ (𝐴 ∈ On → (𝐴 ↑o ∅)
∈ On) |
28 | 27 | adantr 484 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ ∅ ∈
𝐴) → (𝐴 ↑o ∅)
∈ On) |
29 | | omcl 8171 |
. . . . . . . . . . 11
⊢ (((𝐴 ↑o 𝑦) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ On) |
30 | 29 | expcom 417 |
. . . . . . . . . 10
⊢ (𝐴 ∈ On → ((𝐴 ↑o 𝑦) ∈ On → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ On)) |
31 | 30 | adantr 484 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ↑o 𝑦) ∈ On → ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ On)) |
32 | | oesuc 8162 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ↑o suc 𝑦) = ((𝐴 ↑o 𝑦) ·o 𝐴)) |
33 | 32 | eleq1d 2836 |
. . . . . . . . 9
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ↑o suc 𝑦) ∈ On ↔ ((𝐴 ↑o 𝑦) ·o 𝐴) ∈ On)) |
34 | 31, 33 | sylibrd 262 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ↑o 𝑦) ∈ On → (𝐴 ↑o suc 𝑦) ∈ On)) |
35 | 34 | expcom 417 |
. . . . . . 7
⊢ (𝑦 ∈ On → (𝐴 ∈ On → ((𝐴 ↑o 𝑦) ∈ On → (𝐴 ↑o suc 𝑦) ∈ On))) |
36 | 35 | adantrd 495 |
. . . . . 6
⊢ (𝑦 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈
𝐴) → ((𝐴 ↑o 𝑦) ∈ On → (𝐴 ↑o suc 𝑦) ∈ On))) |
37 | | vex 3413 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
38 | | iunon 7986 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ ∀𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On) → ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On) |
39 | 37, 38 | mpan 689 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 (𝐴 ↑o 𝑦) ∈ On → ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On) |
40 | | oelim 8169 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
41 | 37, 40 | mpanlr1 705 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
42 | 41 | anasss 470 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
43 | 42 | an12s 648 |
. . . . . . . . 9
⊢ ((Lim
𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴 ↑o 𝑥) = ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦)) |
44 | 43 | eleq1d 2836 |
. . . . . . . 8
⊢ ((Lim
𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → ((𝐴 ↑o 𝑥) ∈ On ↔ ∪ 𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On)) |
45 | 39, 44 | syl5ibr 249 |
. . . . . . 7
⊢ ((Lim
𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∀𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On → (𝐴 ↑o 𝑥) ∈ On)) |
46 | 45 | ex 416 |
. . . . . 6
⊢ (Lim
𝑥 → ((𝐴 ∈ On ∧ ∅ ∈
𝐴) → (∀𝑦 ∈ 𝑥 (𝐴 ↑o 𝑦) ∈ On → (𝐴 ↑o 𝑥) ∈ On))) |
47 | 19, 21, 23, 25, 28, 36, 46 | tfinds3 7578 |
. . . . 5
⊢ (𝐵 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈
𝐴) → (𝐴 ↑o 𝐵) ∈ On)) |
48 | 47 | expd 419 |
. . . 4
⊢ (𝐵 ∈ On → (𝐴 ∈ On → (∅
∈ 𝐴 → (𝐴 ↑o 𝐵) ∈ On))) |
49 | 48 | com12 32 |
. . 3
⊢ (𝐴 ∈ On → (𝐵 ∈ On → (∅
∈ 𝐴 → (𝐴 ↑o 𝐵) ∈ On))) |
50 | 49 | imp31 421 |
. 2
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈
𝐴) → (𝐴 ↑o 𝐵) ∈ On) |
51 | 17, 50 | oe0lem 8148 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ↑o 𝐵) ∈ On) |