MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oen0 Structured version   Visualization version   GIF version

Theorem oen0 8527
Description: Ordinal exponentiation with a nonzero base is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
Assertion
Ref Expression
oen0 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))

Proof of Theorem oen0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7377 . . . . . 6 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
21eleq2d 2814 . . . . 5 (𝑥 = ∅ → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o ∅)))
3 oveq2 7377 . . . . . 6 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
43eleq2d 2814 . . . . 5 (𝑥 = 𝑦 → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o 𝑦)))
5 oveq2 7377 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
65eleq2d 2814 . . . . 5 (𝑥 = suc 𝑦 → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o suc 𝑦)))
7 oveq2 7377 . . . . . 6 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
87eleq2d 2814 . . . . 5 (𝑥 = 𝐵 → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o 𝐵)))
9 0lt1o 8445 . . . . . . 7 ∅ ∈ 1o
10 oe0 8463 . . . . . . 7 (𝐴 ∈ On → (𝐴o ∅) = 1o)
119, 10eleqtrrid 2835 . . . . . 6 (𝐴 ∈ On → ∅ ∈ (𝐴o ∅))
1211adantr 480 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o ∅))
13 oecl 8478 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
14 omordi 8507 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴o 𝑦) ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ((𝐴o 𝑦) ·o ∅) ∈ ((𝐴o 𝑦) ·o 𝐴)))
15 om0 8458 . . . . . . . . . . . . . 14 ((𝐴o 𝑦) ∈ On → ((𝐴o 𝑦) ·o ∅) = ∅)
1615eleq1d 2813 . . . . . . . . . . . . 13 ((𝐴o 𝑦) ∈ On → (((𝐴o 𝑦) ·o ∅) ∈ ((𝐴o 𝑦) ·o 𝐴) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
1716ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴o 𝑦) ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (((𝐴o 𝑦) ·o ∅) ∈ ((𝐴o 𝑦) ·o 𝐴) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
1814, 17sylibd 239 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝐴o 𝑦) ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
1913, 18syldanl 602 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
20 oesuc 8468 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
2120eleq2d 2814 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (∅ ∈ (𝐴o suc 𝑦) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
2221adantr 480 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ (𝐴o suc 𝑦) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
2319, 22sylibrd 259 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o suc 𝑦)))
2423exp31 419 . . . . . . . 8 (𝐴 ∈ On → (𝑦 ∈ On → (∅ ∈ (𝐴o 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o suc 𝑦)))))
2524com12 32 . . . . . . 7 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ (𝐴o 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o suc 𝑦)))))
2625com34 91 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → (∅ ∈ (𝐴o 𝑦) → ∅ ∈ (𝐴o suc 𝑦)))))
2726impd 410 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∅ ∈ (𝐴o 𝑦) → ∅ ∈ (𝐴o suc 𝑦))))
28 0ellim 6384 . . . . . . . . . . . 12 (Lim 𝑥 → ∅ ∈ 𝑥)
29 eqimss2 4003 . . . . . . . . . . . . 13 ((𝐴o ∅) = 1o → 1o ⊆ (𝐴o ∅))
3010, 29syl 17 . . . . . . . . . . . 12 (𝐴 ∈ On → 1o ⊆ (𝐴o ∅))
31 oveq2 7377 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝐴o 𝑦) = (𝐴o ∅))
3231sseq2d 3976 . . . . . . . . . . . . 13 (𝑦 = ∅ → (1o ⊆ (𝐴o 𝑦) ↔ 1o ⊆ (𝐴o ∅)))
3332rspcev 3585 . . . . . . . . . . . 12 ((∅ ∈ 𝑥 ∧ 1o ⊆ (𝐴o ∅)) → ∃𝑦𝑥 1o ⊆ (𝐴o 𝑦))
3428, 30, 33syl2an 596 . . . . . . . . . . 11 ((Lim 𝑥𝐴 ∈ On) → ∃𝑦𝑥 1o ⊆ (𝐴o 𝑦))
35 ssiun 5005 . . . . . . . . . . 11 (∃𝑦𝑥 1o ⊆ (𝐴o 𝑦) → 1o 𝑦𝑥 (𝐴o 𝑦))
3634, 35syl 17 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → 1o 𝑦𝑥 (𝐴o 𝑦))
3736adantrr 717 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1o 𝑦𝑥 (𝐴o 𝑦))
38 vex 3448 . . . . . . . . . . . 12 𝑥 ∈ V
39 oelim 8475 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4038, 39mpanlr1 706 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4140anasss 466 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4241an12s 649 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4337, 42sseqtrrd 3981 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1o ⊆ (𝐴o 𝑥))
44 limelon 6385 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
4538, 44mpan 690 . . . . . . . . . . 11 (Lim 𝑥𝑥 ∈ On)
46 oecl 8478 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴o 𝑥) ∈ On)
4746ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐴o 𝑥) ∈ On)
4845, 47sylan 580 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → (𝐴o 𝑥) ∈ On)
49 eloni 6330 . . . . . . . . . 10 ((𝐴o 𝑥) ∈ On → Ord (𝐴o 𝑥))
50 ordgt0ge1 8434 . . . . . . . . . 10 (Ord (𝐴o 𝑥) → (∅ ∈ (𝐴o 𝑥) ↔ 1o ⊆ (𝐴o 𝑥)))
5148, 49, 503syl 18 . . . . . . . . 9 ((Lim 𝑥𝐴 ∈ On) → (∅ ∈ (𝐴o 𝑥) ↔ 1o ⊆ (𝐴o 𝑥)))
5251adantrr 717 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∅ ∈ (𝐴o 𝑥) ↔ 1o ⊆ (𝐴o 𝑥)))
5343, 52mpbird 257 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → ∅ ∈ (𝐴o 𝑥))
5453ex 412 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝑥)))
5554a1dd 50 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 ∅ ∈ (𝐴o 𝑦) → ∅ ∈ (𝐴o 𝑥))))
562, 4, 6, 8, 12, 27, 55tfinds3 7821 . . . 4 (𝐵 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵)))
5756expd 415 . . 3 (𝐵 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o 𝐵))))
5857com12 32 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o 𝐵))))
5958imp31 417 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911  c0 4292   ciun 4951  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322  (class class class)co 7369  1oc1o 8404   ·o comu 8409  o coe 8410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-omul 8416  df-oexp 8417
This theorem is referenced by:  oeordi  8528  oeordsuc  8535  oeoelem  8539  oelimcl  8541  oeeui  8543  cantnflt  9601  cnfcom  9629  infxpenc  9947  infxpenc2  9951  onexoegt  43206  cantnftermord  43282  oacl2g  43292  onmcl  43293  omabs2  43294  omcl2  43295  ofoaf  43317  ofoafo  43318
  Copyright terms: Public domain W3C validator