MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oen0 Structured version   Visualization version   GIF version

Theorem oen0 8215
Description: Ordinal exponentiation with a nonzero mantissa is nonzero. Proposition 8.32 of [TakeutiZaring] p. 67. (Contributed by NM, 4-Jan-2005.)
Assertion
Ref Expression
oen0 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))

Proof of Theorem oen0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7151 . . . . . 6 (𝑥 = ∅ → (𝐴o 𝑥) = (𝐴o ∅))
21eleq2d 2836 . . . . 5 (𝑥 = ∅ → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o ∅)))
3 oveq2 7151 . . . . . 6 (𝑥 = 𝑦 → (𝐴o 𝑥) = (𝐴o 𝑦))
43eleq2d 2836 . . . . 5 (𝑥 = 𝑦 → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o 𝑦)))
5 oveq2 7151 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴o 𝑥) = (𝐴o suc 𝑦))
65eleq2d 2836 . . . . 5 (𝑥 = suc 𝑦 → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o suc 𝑦)))
7 oveq2 7151 . . . . . 6 (𝑥 = 𝐵 → (𝐴o 𝑥) = (𝐴o 𝐵))
87eleq2d 2836 . . . . 5 (𝑥 = 𝐵 → (∅ ∈ (𝐴o 𝑥) ↔ ∅ ∈ (𝐴o 𝐵)))
9 0lt1o 8132 . . . . . . 7 ∅ ∈ 1o
10 oe0 8150 . . . . . . 7 (𝐴 ∈ On → (𝐴o ∅) = 1o)
119, 10eleqtrrid 2858 . . . . . 6 (𝐴 ∈ On → ∅ ∈ (𝐴o ∅))
1211adantr 485 . . . . 5 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o ∅))
13 oecl 8165 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o 𝑦) ∈ On)
14 omordi 8195 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴o 𝑦) ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ((𝐴o 𝑦) ·o ∅) ∈ ((𝐴o 𝑦) ·o 𝐴)))
15 om0 8145 . . . . . . . . . . . . . 14 ((𝐴o 𝑦) ∈ On → ((𝐴o 𝑦) ·o ∅) = ∅)
1615eleq1d 2835 . . . . . . . . . . . . 13 ((𝐴o 𝑦) ∈ On → (((𝐴o 𝑦) ·o ∅) ∈ ((𝐴o 𝑦) ·o 𝐴) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
1716ad2antlr 727 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝐴o 𝑦) ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (((𝐴o 𝑦) ·o ∅) ∈ ((𝐴o 𝑦) ·o 𝐴) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
1814, 17sylibd 242 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝐴o 𝑦) ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
1913, 18syldanl 605 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
20 oesuc 8155 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴o suc 𝑦) = ((𝐴o 𝑦) ·o 𝐴))
2120eleq2d 2836 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (∅ ∈ (𝐴o suc 𝑦) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
2221adantr 485 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ (𝐴o suc 𝑦) ↔ ∅ ∈ ((𝐴o 𝑦) ·o 𝐴)))
2319, 22sylibrd 262 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ ∅ ∈ (𝐴o 𝑦)) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o suc 𝑦)))
2423exp31 424 . . . . . . . 8 (𝐴 ∈ On → (𝑦 ∈ On → (∅ ∈ (𝐴o 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o suc 𝑦)))))
2524com12 32 . . . . . . 7 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ (𝐴o 𝑦) → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o suc 𝑦)))))
2625com34 91 . . . . . 6 (𝑦 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → (∅ ∈ (𝐴o 𝑦) → ∅ ∈ (𝐴o suc 𝑦)))))
2726impd 415 . . . . 5 (𝑦 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∅ ∈ (𝐴o 𝑦) → ∅ ∈ (𝐴o suc 𝑦))))
28 0ellim 6224 . . . . . . . . . . . 12 (Lim 𝑥 → ∅ ∈ 𝑥)
29 eqimss2 3945 . . . . . . . . . . . . 13 ((𝐴o ∅) = 1o → 1o ⊆ (𝐴o ∅))
3010, 29syl 17 . . . . . . . . . . . 12 (𝐴 ∈ On → 1o ⊆ (𝐴o ∅))
31 oveq2 7151 . . . . . . . . . . . . . 14 (𝑦 = ∅ → (𝐴o 𝑦) = (𝐴o ∅))
3231sseq2d 3920 . . . . . . . . . . . . 13 (𝑦 = ∅ → (1o ⊆ (𝐴o 𝑦) ↔ 1o ⊆ (𝐴o ∅)))
3332rspcev 3539 . . . . . . . . . . . 12 ((∅ ∈ 𝑥 ∧ 1o ⊆ (𝐴o ∅)) → ∃𝑦𝑥 1o ⊆ (𝐴o 𝑦))
3428, 30, 33syl2an 599 . . . . . . . . . . 11 ((Lim 𝑥𝐴 ∈ On) → ∃𝑦𝑥 1o ⊆ (𝐴o 𝑦))
35 ssiun 4928 . . . . . . . . . . 11 (∃𝑦𝑥 1o ⊆ (𝐴o 𝑦) → 1o 𝑦𝑥 (𝐴o 𝑦))
3634, 35syl 17 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → 1o 𝑦𝑥 (𝐴o 𝑦))
3736adantrr 717 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1o 𝑦𝑥 (𝐴o 𝑦))
38 vex 3411 . . . . . . . . . . . 12 𝑥 ∈ V
39 oelim 8162 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4038, 39mpanlr1 706 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ Lim 𝑥) ∧ ∅ ∈ 𝐴) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4140anasss 471 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥 ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4241an12s 649 . . . . . . . . 9 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (𝐴o 𝑥) = 𝑦𝑥 (𝐴o 𝑦))
4337, 42sseqtrrd 3929 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → 1o ⊆ (𝐴o 𝑥))
44 limelon 6225 . . . . . . . . . . . 12 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
4538, 44mpan 690 . . . . . . . . . . 11 (Lim 𝑥𝑥 ∈ On)
46 oecl 8165 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴o 𝑥) ∈ On)
4746ancoms 463 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝐴 ∈ On) → (𝐴o 𝑥) ∈ On)
4845, 47sylan 584 . . . . . . . . . 10 ((Lim 𝑥𝐴 ∈ On) → (𝐴o 𝑥) ∈ On)
49 eloni 6172 . . . . . . . . . 10 ((𝐴o 𝑥) ∈ On → Ord (𝐴o 𝑥))
50 ordgt0ge1 8125 . . . . . . . . . 10 (Ord (𝐴o 𝑥) → (∅ ∈ (𝐴o 𝑥) ↔ 1o ⊆ (𝐴o 𝑥)))
5148, 49, 503syl 18 . . . . . . . . 9 ((Lim 𝑥𝐴 ∈ On) → (∅ ∈ (𝐴o 𝑥) ↔ 1o ⊆ (𝐴o 𝑥)))
5251adantrr 717 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → (∅ ∈ (𝐴o 𝑥) ↔ 1o ⊆ (𝐴o 𝑥)))
5343, 52mpbird 260 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ ∅ ∈ 𝐴)) → ∅ ∈ (𝐴o 𝑥))
5453ex 417 . . . . . 6 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝑥)))
5554a1dd 50 . . . . 5 (Lim 𝑥 → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (∀𝑦𝑥 ∅ ∈ (𝐴o 𝑦) → ∅ ∈ (𝐴o 𝑥))))
562, 4, 6, 8, 12, 27, 55tfinds3 7571 . . . 4 (𝐵 ∈ On → ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵)))
5756expd 420 . . 3 (𝐵 ∈ On → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o 𝐵))))
5857com12 32 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴o 𝐵))))
5958imp31 422 1 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wral 3068  wrex 3069  Vcvv 3407  wss 3854  c0 4221   ciun 4876  Ord word 6161  Oncon0 6162  Lim wlim 6163  suc csuc 6164  (class class class)co 7143  1oc1o 8098   ·o comu 8103  o coe 8104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5149  ax-sep 5162  ax-nul 5169  ax-pr 5291  ax-un 7452
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-oexp 8111
This theorem is referenced by:  oeordi  8216  oeordsuc  8223  oeoelem  8227  oelimcl  8229  oeeui  8231  cantnflt  9153  cnfcom  9181  infxpenc  9463  infxpenc2  9467
  Copyright terms: Public domain W3C validator