Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincsect | Structured version Visualization version GIF version |
Description: In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
thincsect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
Ref | Expression |
---|---|
thincsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | thincsect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | eqid 2736 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
4 | eqid 2736 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
5 | thincsect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | thincsect.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
7 | 6 | thinccd 46364 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | thincsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | thincsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 1, 2, 3, 4, 5, 7, 8, 9 | issect 17510 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
11 | df-3an 1089 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
12 | 10, 11 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
13 | 6 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐶 ∈ ThinCat) |
14 | 8 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝑋 ∈ 𝐵) |
15 | 7 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐶 ∈ Cat) |
16 | 9 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝑌 ∈ 𝐵) |
17 | simprl 769 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌)) | |
18 | simprr 771 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐺 ∈ (𝑌𝐻𝑋)) | |
19 | 1, 2, 3, 15, 14, 16, 14, 17, 18 | catcocl 17439 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) ∈ (𝑋𝐻𝑋)) |
20 | 13, 1, 2, 14, 4, 19 | thincid 46372 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) |
21 | 12, 20 | mpbiran3d 46200 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 〈cop 4571 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 Hom chom 17018 compcco 17019 Catccat 17418 Idccid 17419 Sectcsect 17501 ThinCatcthinc 46358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-cat 17422 df-cid 17423 df-sect 17504 df-thinc 46359 |
This theorem is referenced by: thincsect2 46397 thinciso 46399 |
Copyright terms: Public domain | W3C validator |