| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincsect | Structured version Visualization version GIF version | ||
| Description: In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| thincsect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| thincsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | thincsect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2731 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | eqid 2731 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | thincsect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | thincsect.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 7 | 6 | thinccd 49534 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | thincsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | thincsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 1, 2, 3, 4, 5, 7, 8, 9 | issect 17660 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 11 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 12 | 10, 11 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 13 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐶 ∈ ThinCat) |
| 14 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝑋 ∈ 𝐵) |
| 15 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐶 ∈ Cat) |
| 16 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝑌 ∈ 𝐵) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐺 ∈ (𝑌𝐻𝑋)) | |
| 19 | 1, 2, 3, 15, 14, 16, 14, 17, 18 | catcocl 17591 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) ∈ (𝑋𝐻𝑋)) |
| 20 | 13, 1, 2, 14, 4, 19 | thincid 49543 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) |
| 21 | 12, 20 | mpbiran3d 48907 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Hom chom 17172 compcco 17173 Catccat 17570 Idccid 17571 Sectcsect 17651 ThinCatcthinc 49528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-cat 17574 df-cid 17575 df-sect 17654 df-thinc 49529 |
| This theorem is referenced by: thincsect2 49579 thinciso 49581 |
| Copyright terms: Public domain | W3C validator |