| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincsect | Structured version Visualization version GIF version | ||
| Description: In a thin category, one morphism is a section of another iff they are pointing towards each other. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| thincsect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| Ref | Expression |
|---|---|
| thincsect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | thincsect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 3 | eqid 2730 | . . . 4 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 5 | thincsect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
| 6 | thincsect.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 7 | 6 | thinccd 49416 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 8 | thincsect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | thincsect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 1, 2, 3, 4, 5, 7, 8, 9 | issect 17722 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 11 | df-3an 1088 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋))) | |
| 12 | 10, 11 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)))) |
| 13 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐶 ∈ ThinCat) |
| 14 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝑋 ∈ 𝐵) |
| 15 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐶 ∈ Cat) |
| 16 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝑌 ∈ 𝐵) |
| 17 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌)) | |
| 18 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → 𝐺 ∈ (𝑌𝐻𝑋)) | |
| 19 | 1, 2, 3, 15, 14, 16, 14, 17, 18 | catcocl 17653 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) ∈ (𝑋𝐻𝑋)) |
| 20 | 13, 1, 2, 14, 4, 19 | thincid 49425 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → (𝐺(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝐹) = ((Id‘𝐶)‘𝑋)) |
| 21 | 12, 20 | mpbiran3d 48789 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Hom chom 17238 compcco 17239 Catccat 17632 Idccid 17633 Sectcsect 17713 ThinCatcthinc 49410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-cat 17636 df-cid 17637 df-sect 17716 df-thinc 49411 |
| This theorem is referenced by: thincsect2 49461 thinciso 49463 |
| Copyright terms: Public domain | W3C validator |