![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincinv | Structured version Visualization version GIF version |
Description: In a thin category, πΉ is an inverse of πΊ iff πΉ is a section of πΊ (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincsect.c | β’ (π β πΆ β ThinCat) |
thincsect.b | β’ π΅ = (BaseβπΆ) |
thincsect.x | β’ (π β π β π΅) |
thincsect.y | β’ (π β π β π΅) |
thincsect.s | β’ π = (SectβπΆ) |
thincinv.n | β’ π = (InvβπΆ) |
Ref | Expression |
---|---|
thincinv | β’ (π β (πΉ(πππ)πΊ β πΉ(πππ)πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.b | . . 3 β’ π΅ = (BaseβπΆ) | |
2 | thincinv.n | . . 3 β’ π = (InvβπΆ) | |
3 | thincsect.c | . . . 4 β’ (π β πΆ β ThinCat) | |
4 | 3 | thinccd 47799 | . . 3 β’ (π β πΆ β Cat) |
5 | thincsect.x | . . 3 β’ (π β π β π΅) | |
6 | thincsect.y | . . 3 β’ (π β π β π΅) | |
7 | thincsect.s | . . 3 β’ π = (SectβπΆ) | |
8 | 1, 2, 4, 5, 6, 7 | isinv 17703 | . 2 β’ (π β (πΉ(πππ)πΊ β (πΉ(πππ)πΊ β§ πΊ(πππ)πΉ))) |
9 | 3, 1, 5, 6, 7 | thincsect2 47832 | . . 3 β’ (π β (πΉ(πππ)πΊ β πΊ(πππ)πΉ)) |
10 | 9 | biimpa 476 | . 2 β’ ((π β§ πΉ(πππ)πΊ) β πΊ(πππ)πΉ) |
11 | 8, 10 | mpbiran3d 47636 | 1 β’ (π β (πΉ(πππ)πΊ β πΉ(πππ)πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 class class class wbr 5138 βcfv 6533 (class class class)co 7401 Basecbs 17140 Sectcsect 17687 Invcinv 17688 ThinCatcthinc 47793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-cat 17608 df-cid 17609 df-sect 17690 df-inv 17691 df-thinc 47794 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |