![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > thincinv | Structured version Visualization version GIF version |
Description: In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺 (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
thincsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
thincinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
Ref | Expression |
---|---|
thincinv | ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | thincsect.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | thincinv.n | . . 3 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | thincsect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
4 | 3 | thinccd 48692 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
5 | thincsect.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | thincsect.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
7 | thincsect.s | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
8 | 1, 2, 4, 5, 6, 7 | isinv 17821 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
9 | 3, 1, 5, 6, 7 | thincsect2 48725 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) |
10 | 9 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝐹(𝑋𝑆𝑌)𝐺) → 𝐺(𝑌𝑆𝑋)𝐹) |
11 | 8, 10 | mpbiran3d 48530 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Sectcsect 17805 Invcinv 17806 ThinCatcthinc 48686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-cid 17727 df-sect 17808 df-inv 17809 df-thinc 48687 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |