Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  thincinv Structured version   Visualization version   GIF version

Theorem thincinv 46228
Description: In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺 (Contributed by Zhi Wang, 24-Sep-2024.)
Hypotheses
Ref Expression
thincsect.c (𝜑𝐶 ∈ ThinCat)
thincsect.b 𝐵 = (Base‘𝐶)
thincsect.x (𝜑𝑋𝐵)
thincsect.y (𝜑𝑌𝐵)
thincsect.s 𝑆 = (Sect‘𝐶)
thincinv.n 𝑁 = (Inv‘𝐶)
Assertion
Ref Expression
thincinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑆𝑌)𝐺))

Proof of Theorem thincinv
StepHypRef Expression
1 thincsect.b . . 3 𝐵 = (Base‘𝐶)
2 thincinv.n . . 3 𝑁 = (Inv‘𝐶)
3 thincsect.c . . . 4 (𝜑𝐶 ∈ ThinCat)
43thinccd 46194 . . 3 (𝜑𝐶 ∈ Cat)
5 thincsect.x . . 3 (𝜑𝑋𝐵)
6 thincsect.y . . 3 (𝜑𝑌𝐵)
7 thincsect.s . . 3 𝑆 = (Sect‘𝐶)
81, 2, 4, 5, 6, 7isinv 17389 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
93, 1, 5, 6, 7thincsect2 46227 . . 3 (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹))
109biimpa 476 . 2 ((𝜑𝐹(𝑋𝑆𝑌)𝐺) → 𝐺(𝑌𝑆𝑋)𝐹)
118, 10mpbiran3d 46030 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹(𝑋𝑆𝑌)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  Sectcsect 17373  Invcinv 17374  ThinCatcthinc 46188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-thinc 46189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator