| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > thincinv | Structured version Visualization version GIF version | ||
| Description: In a thin category, 𝐹 is an inverse of 𝐺 iff 𝐹 is a section of 𝐺. Example 7.20(7) of [Adamek] p. 107. (Contributed by Zhi Wang, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| thincsect.c | ⊢ (𝜑 → 𝐶 ∈ ThinCat) |
| thincsect.b | ⊢ 𝐵 = (Base‘𝐶) |
| thincsect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| thincsect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| thincsect.s | ⊢ 𝑆 = (Sect‘𝐶) |
| thincinv.n | ⊢ 𝑁 = (Inv‘𝐶) |
| Ref | Expression |
|---|---|
| thincinv | ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincsect.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | thincinv.n | . . 3 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | thincsect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ThinCat) | |
| 4 | 3 | thinccd 49412 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 5 | thincsect.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | thincsect.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 7 | thincsect.s | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 8 | 1, 2, 4, 5, 6, 7 | isinv 17722 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| 9 | 3, 1, 5, 6, 7 | thincsect2 49457 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) |
| 10 | 9 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝐹(𝑋𝑆𝑌)𝐺) → 𝐺(𝑌𝑆𝑋)𝐹) |
| 11 | 8, 10 | mpbiran3d 48785 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹(𝑋𝑆𝑌)𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Sectcsect 17706 Invcinv 17707 ThinCatcthinc 49406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-cat 17629 df-cid 17630 df-sect 17709 df-inv 17710 df-thinc 49407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |