| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oteqex 5438 fsnex 7212 fisupg 9167 fiinfg 9380 cantnff 9559 fseqenlem2 9908 fpwwe2lem10 10523 fpwwe2lem11 10524 fpwwe2 10526 rlimsqzlem 15548 ramub1lem2 16931 mriss 17533 invfun 17663 pltle 18229 subgslw 19521 frgpnabllem2 19779 cyggeninv 19788 ablfaclem3 19994 lmodfopnelem1 20824 pjff 21642 pjf2 21644 pjfo 21645 pjcss 21646 mplind 21998 mhpmpl 22052 fvmptnn04ifc 22760 chfacfisf 22762 chfacfisfcpmat 22763 tg1 22872 cldss 22937 cnf2 23157 cncnp 23188 lly1stc 23404 refbas 23418 qtoptop2 23607 qtoprest 23625 elfm3 23858 flfelbas 23902 cnextf 23974 restutopopn 24146 cfilufbas 24196 fmucnd 24199 blgt0 24307 xblss2ps 24309 xblss2 24310 tngngp 24562 cfilfil 25187 iscau2 25197 caufpm 25202 cmetcaulem 25208 dvcnp2 25841 dvcnp2OLD 25842 dvfsumrlim 25958 dvfsumrlim2 25959 fta1g 26095 dvdsflsumcom 27118 fsumvma 27144 vmadivsumb 27414 dchrisumlema 27419 dchrvmasumlem1 27426 dchrvmasum2lem 27427 dchrvmasumiflem1 27432 selbergb 27480 selberg2b 27483 pntibndlem3 27523 pntlem3 27540 motgrp 28514 oppnid 28717 sspnv 30696 lnof 30725 bloln 30754 dfmgc2 32967 elrgspnsubrunlem2 33205 ssdifidllem 33411 rprmcl 33473 rprmnz 33475 rprmnunit 33476 ply1unit 33528 fldexttr 33661 algextdeglem8 33727 reff 33842 signsply0 34554 cvmliftmolem1 35293 cvmlift2lem9a 35315 mbfresfi 37685 itg2gt0cn 37694 ismtyres 37827 ghomf 37909 rngoisohom 37999 pridlidl 38054 pridlnr 38055 maxidlidl 38060 lflf 39081 lkrcl 39110 cvrlt 39288 cvrle 39296 atbase 39307 llnbase 39527 lplnbase 39552 lvolbase 39596 psubssat 39772 lhpbase 40016 laut1o 40103 ldillaut 40129 ltrnldil 40140 diadmclN 41055 pell1234qrre 42864 lnmlsslnm 43093 cantnf2 43337 naddcnfid1 43379 cvgdvgrat 44325 stoweidlem34 46051 mpbiran3d 48807 |
| Copyright terms: Public domain | W3C validator |