| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oteqex 5504 fsnex 7304 fisupg 9325 fiinfg 9540 cantnff 9715 fseqenlem2 10066 fpwwe2lem10 10681 fpwwe2lem11 10682 fpwwe2 10684 rlimsqzlem 15686 ramub1lem2 17066 mriss 17679 invfun 17809 pltle 18379 subgslw 19635 frgpnabllem2 19893 cyggeninv 19902 ablfaclem3 20108 lmodfopnelem1 20897 pjff 21733 pjf2 21735 pjfo 21736 pjcss 21737 mplind 22095 mhpmpl 22149 fvmptnn04ifc 22859 chfacfisf 22861 chfacfisfcpmat 22862 tg1 22972 cldss 23038 cnf2 23258 cncnp 23289 lly1stc 23505 refbas 23519 qtoptop2 23708 qtoprest 23726 elfm3 23959 flfelbas 24003 cnextf 24075 restutopopn 24248 cfilufbas 24299 fmucnd 24302 blgt0 24410 xblss2ps 24412 xblss2 24413 tngngp 24676 cfilfil 25302 iscau2 25312 caufpm 25317 cmetcaulem 25323 dvcnp2 25956 dvcnp2OLD 25957 dvfsumrlim 26073 dvfsumrlim2 26074 fta1g 26210 dvdsflsumcom 27232 fsumvma 27258 vmadivsumb 27528 dchrisumlema 27533 dchrvmasumlem1 27540 dchrvmasum2lem 27541 dchrvmasumiflem1 27546 selbergb 27594 selberg2b 27597 pntibndlem3 27637 pntlem3 27654 motgrp 28552 oppnid 28755 sspnv 30746 lnof 30775 bloln 30804 dfmgc2 32987 elrgspnsubrunlem2 33253 ssdifidllem 33485 rprmcl 33547 rprmnz 33549 rprmnunit 33550 ply1unit 33601 fldexttr 33710 algextdeglem8 33766 reff 33839 signsply0 34567 cvmliftmolem1 35287 cvmlift2lem9a 35309 mbfresfi 37674 itg2gt0cn 37683 ismtyres 37816 ghomf 37898 rngoisohom 37988 pridlidl 38043 pridlnr 38044 maxidlidl 38049 lflf 39065 lkrcl 39094 cvrlt 39272 cvrle 39280 atbase 39291 llnbase 39512 lplnbase 39537 lvolbase 39581 psubssat 39757 lhpbase 40001 laut1o 40088 ldillaut 40114 ltrnldil 40125 diadmclN 41040 pell1234qrre 42868 lnmlsslnm 43098 cantnf2 43343 naddcnfid1 43385 cvgdvgrat 44337 stoweidlem34 46054 mpbiran3d 48722 |
| Copyright terms: Public domain | W3C validator |