| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oteqex 5447 fsnex 7224 fisupg 9193 fiinfg 9410 cantnff 9589 fseqenlem2 9938 fpwwe2lem10 10553 fpwwe2lem11 10554 fpwwe2 10556 rlimsqzlem 15574 ramub1lem2 16957 mriss 17559 invfun 17689 pltle 18255 subgslw 19513 frgpnabllem2 19771 cyggeninv 19780 ablfaclem3 19986 lmodfopnelem1 20819 pjff 21637 pjf2 21639 pjfo 21640 pjcss 21641 mplind 21993 mhpmpl 22047 fvmptnn04ifc 22755 chfacfisf 22757 chfacfisfcpmat 22758 tg1 22867 cldss 22932 cnf2 23152 cncnp 23183 lly1stc 23399 refbas 23413 qtoptop2 23602 qtoprest 23620 elfm3 23853 flfelbas 23897 cnextf 23969 restutopopn 24142 cfilufbas 24192 fmucnd 24195 blgt0 24303 xblss2ps 24305 xblss2 24306 tngngp 24558 cfilfil 25183 iscau2 25193 caufpm 25198 cmetcaulem 25204 dvcnp2 25837 dvcnp2OLD 25838 dvfsumrlim 25954 dvfsumrlim2 25955 fta1g 26091 dvdsflsumcom 27114 fsumvma 27140 vmadivsumb 27410 dchrisumlema 27415 dchrvmasumlem1 27422 dchrvmasum2lem 27423 dchrvmasumiflem1 27428 selbergb 27476 selberg2b 27479 pntibndlem3 27519 pntlem3 27536 motgrp 28506 oppnid 28709 sspnv 30688 lnof 30717 bloln 30746 dfmgc2 32951 elrgspnsubrunlem2 33198 ssdifidllem 33403 rprmcl 33465 rprmnz 33467 rprmnunit 33468 ply1unit 33520 fldexttr 33630 algextdeglem8 33690 reff 33805 signsply0 34518 cvmliftmolem1 35253 cvmlift2lem9a 35275 mbfresfi 37645 itg2gt0cn 37654 ismtyres 37787 ghomf 37869 rngoisohom 37959 pridlidl 38014 pridlnr 38015 maxidlidl 38020 lflf 39041 lkrcl 39070 cvrlt 39248 cvrle 39256 atbase 39267 llnbase 39488 lplnbase 39513 lvolbase 39557 psubssat 39733 lhpbase 39977 laut1o 40064 ldillaut 40090 ltrnldil 40101 diadmclN 41016 pell1234qrre 42825 lnmlsslnm 43054 cantnf2 43298 naddcnfid1 43340 cvgdvgrat 44286 stoweidlem34 46016 mpbiran3d 48769 |
| Copyright terms: Public domain | W3C validator |