| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oteqex 5460 fsnex 7258 fisupg 9235 fiinfg 9452 cantnff 9627 fseqenlem2 9978 fpwwe2lem10 10593 fpwwe2lem11 10594 fpwwe2 10596 rlimsqzlem 15615 ramub1lem2 16998 mriss 17596 invfun 17726 pltle 18292 subgslw 19546 frgpnabllem2 19804 cyggeninv 19813 ablfaclem3 20019 lmodfopnelem1 20804 pjff 21621 pjf2 21623 pjfo 21624 pjcss 21625 mplind 21977 mhpmpl 22031 fvmptnn04ifc 22739 chfacfisf 22741 chfacfisfcpmat 22742 tg1 22851 cldss 22916 cnf2 23136 cncnp 23167 lly1stc 23383 refbas 23397 qtoptop2 23586 qtoprest 23604 elfm3 23837 flfelbas 23881 cnextf 23953 restutopopn 24126 cfilufbas 24176 fmucnd 24179 blgt0 24287 xblss2ps 24289 xblss2 24290 tngngp 24542 cfilfil 25167 iscau2 25177 caufpm 25182 cmetcaulem 25188 dvcnp2 25821 dvcnp2OLD 25822 dvfsumrlim 25938 dvfsumrlim2 25939 fta1g 26075 dvdsflsumcom 27098 fsumvma 27124 vmadivsumb 27394 dchrisumlema 27399 dchrvmasumlem1 27406 dchrvmasum2lem 27407 dchrvmasumiflem1 27412 selbergb 27460 selberg2b 27463 pntibndlem3 27503 pntlem3 27520 motgrp 28470 oppnid 28673 sspnv 30655 lnof 30684 bloln 30713 dfmgc2 32922 elrgspnsubrunlem2 33199 ssdifidllem 33427 rprmcl 33489 rprmnz 33491 rprmnunit 33492 ply1unit 33544 fldexttr 33654 algextdeglem8 33714 reff 33829 signsply0 34542 cvmliftmolem1 35268 cvmlift2lem9a 35290 mbfresfi 37660 itg2gt0cn 37669 ismtyres 37802 ghomf 37884 rngoisohom 37974 pridlidl 38029 pridlnr 38030 maxidlidl 38035 lflf 39056 lkrcl 39085 cvrlt 39263 cvrle 39271 atbase 39282 llnbase 39503 lplnbase 39528 lvolbase 39572 psubssat 39748 lhpbase 39992 laut1o 40079 ldillaut 40105 ltrnldil 40116 diadmclN 41031 pell1234qrre 42840 lnmlsslnm 43070 cantnf2 43314 naddcnfid1 43356 cvgdvgrat 44302 stoweidlem34 46032 mpbiran3d 48785 |
| Copyright terms: Public domain | W3C validator |