![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
Ref | Expression |
---|---|
pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: oteqex 5510 fsnex 7303 fisupg 9322 fiinfg 9537 cantnff 9712 fseqenlem2 10063 fpwwe2lem10 10678 fpwwe2lem11 10679 fpwwe2 10681 rlimsqzlem 15682 ramub1lem2 17061 mriss 17680 invfun 17812 pltle 18391 subgslw 19649 frgpnabllem2 19907 cyggeninv 19916 ablfaclem3 20122 lmodfopnelem1 20913 pjff 21750 pjf2 21752 pjfo 21753 pjcss 21754 mplind 22112 mhpmpl 22166 fvmptnn04ifc 22874 chfacfisf 22876 chfacfisfcpmat 22877 tg1 22987 cldss 23053 cnf2 23273 cncnp 23304 lly1stc 23520 refbas 23534 qtoptop2 23723 qtoprest 23741 elfm3 23974 flfelbas 24018 cnextf 24090 restutopopn 24263 cfilufbas 24314 fmucnd 24317 blgt0 24425 xblss2ps 24427 xblss2 24428 tngngp 24691 cfilfil 25315 iscau2 25325 caufpm 25330 cmetcaulem 25336 dvcnp2 25970 dvcnp2OLD 25971 dvfsumrlim 26087 dvfsumrlim2 26088 fta1g 26224 dvdsflsumcom 27246 fsumvma 27272 vmadivsumb 27542 dchrisumlema 27547 dchrvmasumlem1 27554 dchrvmasum2lem 27555 dchrvmasumiflem1 27560 selbergb 27608 selberg2b 27611 pntibndlem3 27651 pntlem3 27668 motgrp 28566 oppnid 28769 sspnv 30755 lnof 30784 bloln 30813 dfmgc2 32971 ssdifidllem 33464 rprmcl 33526 rprmnz 33528 rprmnunit 33529 ply1unit 33580 fldexttr 33686 algextdeglem8 33730 reff 33800 signsply0 34545 cvmliftmolem1 35266 cvmlift2lem9a 35288 mbfresfi 37653 itg2gt0cn 37662 ismtyres 37795 ghomf 37877 rngoisohom 37967 pridlidl 38022 pridlnr 38023 maxidlidl 38028 lflf 39045 lkrcl 39074 cvrlt 39252 cvrle 39260 atbase 39271 llnbase 39492 lplnbase 39517 lvolbase 39561 psubssat 39737 lhpbase 39981 laut1o 40068 ldillaut 40094 ltrnldil 40105 diadmclN 41020 pell1234qrre 42840 lnmlsslnm 43070 cantnf2 43315 naddcnfid1 43357 cvgdvgrat 44309 stoweidlem34 45990 mpbiran3d 48646 |
Copyright terms: Public domain | W3C validator |