| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oteqex 5480 fsnex 7281 fisupg 9301 fiinfg 9518 cantnff 9693 fseqenlem2 10044 fpwwe2lem10 10659 fpwwe2lem11 10660 fpwwe2 10662 rlimsqzlem 15670 ramub1lem2 17052 mriss 17652 invfun 17782 pltle 18348 subgslw 19602 frgpnabllem2 19860 cyggeninv 19869 ablfaclem3 20075 lmodfopnelem1 20860 pjff 21677 pjf2 21679 pjfo 21680 pjcss 21681 mplind 22033 mhpmpl 22087 fvmptnn04ifc 22795 chfacfisf 22797 chfacfisfcpmat 22798 tg1 22907 cldss 22972 cnf2 23192 cncnp 23223 lly1stc 23439 refbas 23453 qtoptop2 23642 qtoprest 23660 elfm3 23893 flfelbas 23937 cnextf 24009 restutopopn 24182 cfilufbas 24232 fmucnd 24235 blgt0 24343 xblss2ps 24345 xblss2 24346 tngngp 24598 cfilfil 25224 iscau2 25234 caufpm 25239 cmetcaulem 25245 dvcnp2 25878 dvcnp2OLD 25879 dvfsumrlim 25995 dvfsumrlim2 25996 fta1g 26132 dvdsflsumcom 27155 fsumvma 27181 vmadivsumb 27451 dchrisumlema 27456 dchrvmasumlem1 27463 dchrvmasum2lem 27464 dchrvmasumiflem1 27469 selbergb 27517 selberg2b 27520 pntibndlem3 27560 pntlem3 27577 motgrp 28527 oppnid 28730 sspnv 30712 lnof 30741 bloln 30770 dfmgc2 32981 elrgspnsubrunlem2 33248 ssdifidllem 33476 rprmcl 33538 rprmnz 33540 rprmnunit 33541 ply1unit 33593 fldexttr 33705 algextdeglem8 33763 reff 33875 signsply0 34588 cvmliftmolem1 35308 cvmlift2lem9a 35330 mbfresfi 37695 itg2gt0cn 37704 ismtyres 37837 ghomf 37919 rngoisohom 38009 pridlidl 38064 pridlnr 38065 maxidlidl 38070 lflf 39086 lkrcl 39115 cvrlt 39293 cvrle 39301 atbase 39312 llnbase 39533 lplnbase 39558 lvolbase 39602 psubssat 39778 lhpbase 40022 laut1o 40109 ldillaut 40135 ltrnldil 40146 diadmclN 41061 pell1234qrre 42850 lnmlsslnm 43080 cantnf2 43324 naddcnfid1 43366 cvgdvgrat 44312 stoweidlem34 46043 mpbiran3d 48756 |
| Copyright terms: Public domain | W3C validator |