Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
Ref | Expression |
---|---|
pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: elrabiOLD 3612 oteqex 5408 fsnex 7135 fisupg 8992 fiinfg 9188 cantnff 9362 fseqenlem2 9712 fpwwe2lem10 10327 fpwwe2lem11 10328 fpwwe2 10330 rlimsqzlem 15288 ramub1lem2 16656 mriss 17261 invfun 17393 pltle 17966 subgslw 19136 frgpnabllem2 19390 cyggeninv 19398 ablfaclem3 19605 lmodfopnelem1 20074 pjff 20829 pjf2 20831 pjfo 20832 pjcss 20833 psrbagfOLD 21032 mplind 21188 mhpmpl 21244 fvmptnn04ifc 21909 chfacfisf 21911 chfacfisfcpmat 21912 tg1 22022 cldss 22088 cnf2 22308 cncnp 22339 lly1stc 22555 refbas 22569 qtoptop2 22758 qtoprest 22776 elfm3 23009 flfelbas 23053 cnextf 23125 restutopopn 23298 cfilufbas 23349 fmucnd 23352 blgt0 23460 xblss2ps 23462 xblss2 23463 tngngp 23724 cfilfil 24336 iscau2 24346 caufpm 24351 cmetcaulem 24357 dvcnp2 24989 dvfsumrlim 25100 dvfsumrlim2 25101 fta1g 25237 dvdsflsumcom 26242 fsumvma 26266 vmadivsumb 26536 dchrisumlema 26541 dchrvmasumlem1 26548 dchrvmasum2lem 26549 dchrvmasumiflem1 26554 selbergb 26602 selberg2b 26605 pntibndlem3 26645 pntlem3 26662 motgrp 26808 oppnid 27011 sspnv 28989 lnof 29018 bloln 29047 dfmgc2 31176 fldexttr 31635 reff 31691 signsply0 32430 cvmliftmolem1 33143 cvmlift2lem9a 33165 mbfresfi 35750 itg2gt0cn 35759 ismtyres 35893 ghomf 35975 rngoisohom 36065 pridlidl 36120 pridlnr 36121 maxidlidl 36126 lflf 37004 lkrcl 37033 cvrlt 37211 cvrle 37219 atbase 37230 llnbase 37450 lplnbase 37475 lvolbase 37519 psubssat 37695 lhpbase 37939 laut1o 38026 ldillaut 38052 ltrnldil 38063 diadmclN 38978 pell1234qrre 40590 lnmlsslnm 40822 cvgdvgrat 41820 stoweidlem34 43465 mpbiran3d 46030 |
Copyright terms: Public domain | W3C validator |