| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oteqex 5445 fsnex 7226 fisupg 9182 fiinfg 9395 cantnff 9574 fseqenlem2 9926 fpwwe2lem10 10541 fpwwe2lem11 10542 fpwwe2 10544 rlimsqzlem 15566 ramub1lem2 16949 mriss 17551 invfun 17681 pltle 18247 subgslw 19538 frgpnabllem2 19796 cyggeninv 19805 ablfaclem3 20011 lmodfopnelem1 20841 pjff 21659 pjf2 21661 pjfo 21662 pjcss 21663 mplind 22015 mhpmpl 22069 fvmptnn04ifc 22777 chfacfisf 22779 chfacfisfcpmat 22780 tg1 22889 cldss 22954 cnf2 23174 cncnp 23205 lly1stc 23421 refbas 23435 qtoptop2 23624 qtoprest 23642 elfm3 23875 flfelbas 23919 cnextf 23991 restutopopn 24163 cfilufbas 24213 fmucnd 24216 blgt0 24324 xblss2ps 24326 xblss2 24327 tngngp 24579 cfilfil 25204 iscau2 25214 caufpm 25219 cmetcaulem 25225 dvcnp2 25858 dvcnp2OLD 25859 dvfsumrlim 25975 dvfsumrlim2 25976 fta1g 26112 dvdsflsumcom 27135 fsumvma 27161 vmadivsumb 27431 dchrisumlema 27436 dchrvmasumlem1 27443 dchrvmasum2lem 27444 dchrvmasumiflem1 27449 selbergb 27497 selberg2b 27500 pntibndlem3 27540 pntlem3 27557 motgrp 28531 oppnid 28734 sspnv 30717 lnof 30746 bloln 30775 dfmgc2 32988 elrgspnsubrunlem2 33226 ssdifidllem 33432 rprmcl 33494 rprmnz 33496 rprmnunit 33497 ply1unit 33549 fldexttr 33682 algextdeglem8 33748 reff 33863 signsply0 34575 cvmliftmolem1 35336 cvmlift2lem9a 35358 mbfresfi 37716 itg2gt0cn 37725 ismtyres 37858 ghomf 37940 rngoisohom 38030 pridlidl 38085 pridlnr 38086 maxidlidl 38091 lflf 39172 lkrcl 39201 cvrlt 39379 cvrle 39387 atbase 39398 llnbase 39618 lplnbase 39643 lvolbase 39687 psubssat 39863 lhpbase 40107 laut1o 40194 ldillaut 40220 ltrnldil 40231 diadmclN 41146 pell1234qrre 42959 lnmlsslnm 43188 cantnf2 43432 naddcnfid1 43474 cvgdvgrat 44420 stoweidlem34 46146 mpbiran3d 48911 |
| Copyright terms: Public domain | W3C validator |