![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
Ref | Expression |
---|---|
pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | 1 | biimpa 470 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 490 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: elrabi 3579 oteqex 5183 fsnex 6792 fisupg 8476 fiinfg 8673 cantnff 8847 fseqenlem2 9160 fpwwe2lem11 9776 fpwwe2lem12 9777 fpwwe2 9779 rlimsqzlem 14755 ramub1lem2 16101 mriss 16647 invfun 16775 pltle 17313 subgslw 18381 frgpnabllem2 18629 cyggeninv 18637 ablfaclem3 18839 lmodfopnelem1 19254 psrbagf 19725 mplind 19861 pjff 20418 pjf2 20420 pjfo 20421 pjcss 20422 fvmptnn04ifc 21026 chfacfisf 21028 chfacfisfcpmat 21029 tg1 21138 cldss 21203 cnf2 21423 cncnp 21454 lly1stc 21669 refbas 21683 qtoptop2 21872 qtoprest 21890 elfm3 22123 flfelbas 22167 cnextf 22239 restutopopn 22411 cfilufbas 22462 fmucnd 22465 blgt0 22573 xblss2ps 22575 xblss2 22576 tngngp 22827 cfilfil 23434 iscau2 23444 caufpm 23449 cmetcaulem 23455 dvcnp2 24081 dvfsumrlim 24192 dvfsumrlim2 24193 fta1g 24325 dvdsflsumcom 25326 fsumvma 25350 vmadivsumb 25584 dchrisumlema 25589 dchrvmasumlem1 25596 dchrvmasum2lem 25597 dchrvmasumiflem1 25602 selbergb 25650 selberg2b 25653 pntibndlem3 25693 pntlem3 25710 motgrp 25854 oppnid 26054 sspnv 28135 lnof 28164 bloln 28193 reff 30450 signsply0 31174 cvmliftmolem1 31808 cvmlift2lem9a 31830 mbfresfi 33998 itg2gt0cn 34007 ismtyres 34148 ghomf 34230 rngoisohom 34320 pridlidl 34375 pridlnr 34376 maxidlidl 34381 lflf 35137 lkrcl 35166 cvrlt 35344 cvrle 35352 atbase 35363 llnbase 35583 lplnbase 35608 lvolbase 35652 psubssat 35828 lhpbase 36072 laut1o 36159 ldillaut 36185 ltrnldil 36196 diadmclN 37111 pell1234qrre 38259 lnmlsslnm 38493 cvgdvgrat 39351 stoweidlem34 41044 |
Copyright terms: Public domain | W3C validator |