| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
| Ref | Expression |
|---|---|
| pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
| Ref | Expression |
|---|---|
| simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
| 2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
| 3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: oteqex 5463 fsnex 7261 fisupg 9242 fiinfg 9459 cantnff 9634 fseqenlem2 9985 fpwwe2lem10 10600 fpwwe2lem11 10601 fpwwe2 10603 rlimsqzlem 15622 ramub1lem2 17005 mriss 17603 invfun 17733 pltle 18299 subgslw 19553 frgpnabllem2 19811 cyggeninv 19820 ablfaclem3 20026 lmodfopnelem1 20811 pjff 21628 pjf2 21630 pjfo 21631 pjcss 21632 mplind 21984 mhpmpl 22038 fvmptnn04ifc 22746 chfacfisf 22748 chfacfisfcpmat 22749 tg1 22858 cldss 22923 cnf2 23143 cncnp 23174 lly1stc 23390 refbas 23404 qtoptop2 23593 qtoprest 23611 elfm3 23844 flfelbas 23888 cnextf 23960 restutopopn 24133 cfilufbas 24183 fmucnd 24186 blgt0 24294 xblss2ps 24296 xblss2 24297 tngngp 24549 cfilfil 25174 iscau2 25184 caufpm 25189 cmetcaulem 25195 dvcnp2 25828 dvcnp2OLD 25829 dvfsumrlim 25945 dvfsumrlim2 25946 fta1g 26082 dvdsflsumcom 27105 fsumvma 27131 vmadivsumb 27401 dchrisumlema 27406 dchrvmasumlem1 27413 dchrvmasum2lem 27414 dchrvmasumiflem1 27419 selbergb 27467 selberg2b 27470 pntibndlem3 27510 pntlem3 27527 motgrp 28477 oppnid 28680 sspnv 30662 lnof 30691 bloln 30720 dfmgc2 32929 elrgspnsubrunlem2 33206 ssdifidllem 33434 rprmcl 33496 rprmnz 33498 rprmnunit 33499 ply1unit 33551 fldexttr 33661 algextdeglem8 33721 reff 33836 signsply0 34549 cvmliftmolem1 35275 cvmlift2lem9a 35297 mbfresfi 37667 itg2gt0cn 37676 ismtyres 37809 ghomf 37891 rngoisohom 37981 pridlidl 38036 pridlnr 38037 maxidlidl 38042 lflf 39063 lkrcl 39092 cvrlt 39270 cvrle 39278 atbase 39289 llnbase 39510 lplnbase 39535 lvolbase 39579 psubssat 39755 lhpbase 39999 laut1o 40086 ldillaut 40112 ltrnldil 40123 diadmclN 41038 pell1234qrre 42847 lnmlsslnm 43077 cantnf2 43321 naddcnfid1 43363 cvgdvgrat 44309 stoweidlem34 46039 mpbiran3d 48789 |
| Copyright terms: Public domain | W3C validator |