![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprbda | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.) |
Ref | Expression |
---|---|
pm3.26bda.1 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) |
Ref | Expression |
---|---|
simprbda | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bda.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) | |
2 | 1 | biimpa 476 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜃)) |
3 | 2 | simpld 494 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: oteqex 5519 fsnex 7319 fisupg 9352 fiinfg 9568 cantnff 9743 fseqenlem2 10094 fpwwe2lem10 10709 fpwwe2lem11 10710 fpwwe2 10712 rlimsqzlem 15697 ramub1lem2 17074 mriss 17693 invfun 17825 pltle 18403 subgslw 19658 frgpnabllem2 19916 cyggeninv 19925 ablfaclem3 20131 lmodfopnelem1 20918 pjff 21755 pjf2 21757 pjfo 21758 pjcss 21759 mplind 22117 mhpmpl 22171 fvmptnn04ifc 22879 chfacfisf 22881 chfacfisfcpmat 22882 tg1 22992 cldss 23058 cnf2 23278 cncnp 23309 lly1stc 23525 refbas 23539 qtoptop2 23728 qtoprest 23746 elfm3 23979 flfelbas 24023 cnextf 24095 restutopopn 24268 cfilufbas 24319 fmucnd 24322 blgt0 24430 xblss2ps 24432 xblss2 24433 tngngp 24696 cfilfil 25320 iscau2 25330 caufpm 25335 cmetcaulem 25341 dvcnp2 25975 dvcnp2OLD 25976 dvfsumrlim 26092 dvfsumrlim2 26093 fta1g 26229 dvdsflsumcom 27249 fsumvma 27275 vmadivsumb 27545 dchrisumlema 27550 dchrvmasumlem1 27557 dchrvmasum2lem 27558 dchrvmasumiflem1 27563 selbergb 27611 selberg2b 27614 pntibndlem3 27654 pntlem3 27671 motgrp 28569 oppnid 28772 sspnv 30758 lnof 30787 bloln 30816 dfmgc2 32969 ssdifidllem 33449 rprmcl 33511 rprmnz 33513 rprmnunit 33514 ply1unit 33565 fldexttr 33671 algextdeglem8 33715 reff 33785 signsply0 34528 cvmliftmolem1 35249 cvmlift2lem9a 35271 mbfresfi 37626 itg2gt0cn 37635 ismtyres 37768 ghomf 37850 rngoisohom 37940 pridlidl 37995 pridlnr 37996 maxidlidl 38001 lflf 39019 lkrcl 39048 cvrlt 39226 cvrle 39234 atbase 39245 llnbase 39466 lplnbase 39491 lvolbase 39535 psubssat 39711 lhpbase 39955 laut1o 40042 ldillaut 40068 ltrnldil 40079 diadmclN 40994 pell1234qrre 42808 lnmlsslnm 43038 cantnf2 43287 naddcnfid1 43329 cvgdvgrat 44282 stoweidlem34 45955 mpbiran3d 48530 |
Copyright terms: Public domain | W3C validator |