Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grptcmon Structured version   Visualization version   GIF version

Theorem grptcmon 49604
Description: All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypotheses
Ref Expression
grptcmon.c (𝜑𝐶 = (MndToCat‘𝐺))
grptcmon.g (𝜑𝐺 ∈ Grp)
grptcmon.b (𝜑𝐵 = (Base‘𝐶))
grptcmon.x (𝜑𝑋𝐵)
grptcmon.y (𝜑𝑌𝐵)
grptcmon.h (𝜑𝐻 = (Hom ‘𝐶))
grptcmon.m (𝜑𝑀 = (Mono‘𝐶))
Assertion
Ref Expression
grptcmon (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌))

Proof of Theorem grptcmon
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2730 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2730 . . . . 5 (Mono‘𝐶) = (Mono‘𝐶)
5 grptcmon.c . . . . . 6 (𝜑𝐶 = (MndToCat‘𝐺))
6 grptcmon.g . . . . . . 7 (𝜑𝐺 ∈ Grp)
76grpmndd 18851 . . . . . 6 (𝜑𝐺 ∈ Mnd)
85, 7mndtccat 49599 . . . . 5 (𝜑𝐶 ∈ Cat)
9 grptcmon.x . . . . . 6 (𝜑𝑋𝐵)
10 grptcmon.b . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
119, 10eleqtrd 2831 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
12 grptcmon.y . . . . . 6 (𝜑𝑌𝐵)
1312, 10eleqtrd 2831 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13ismon2 17633 . . . 4 (𝜑 → (𝑓 ∈ (𝑋(Mono‘𝐶)𝑌) ↔ (𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
155ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐶 = (MndToCat‘𝐺))
167ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐺 ∈ Mnd)
1710ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐵 = (Base‘𝐶))
18 simpr1 1195 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (Base‘𝐶))
1918, 17eleqtrrd 2832 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑧𝐵)
209ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑋𝐵)
2112ad2antrr 726 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑌𝐵)
22 eqidd 2731 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (comp‘𝐶) = (comp‘𝐶))
23 eqidd 2731 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌) = (⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌))
2415, 16, 17, 19, 20, 21, 22, 23mndtcco2 49597 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(+g𝐺)𝑔))
2515, 16, 17, 19, 20, 21, 22, 23mndtcco2 49597 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) = (𝑓(+g𝐺)))
2624, 25eqeq12d 2746 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ (𝑓(+g𝐺)𝑔) = (𝑓(+g𝐺))))
276ad2antrr 726 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐺 ∈ Grp)
28 simpr2 1196 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
29 eqidd 2731 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (Hom ‘𝐶) = (Hom ‘𝐶))
3015, 16, 17, 19, 20, 29mndtchom 49595 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑧(Hom ‘𝐶)𝑋) = (Base‘𝐺))
3128, 30eleqtrd 2831 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (Base‘𝐺))
32 simpr3 1197 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ∈ (𝑧(Hom ‘𝐶)𝑋))
3332, 30eleqtrd 2831 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ∈ (Base‘𝐺))
34 simplr 768 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))
3515, 16, 17, 20, 21, 29mndtchom 49595 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑋(Hom ‘𝐶)𝑌) = (Base‘𝐺))
3634, 35eleqtrd 2831 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑓 ∈ (Base‘𝐺))
37 eqid 2730 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
38 eqid 2730 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
3937, 38grplcan 18905 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑔 ∈ (Base‘𝐺) ∧ ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺))) → ((𝑓(+g𝐺)𝑔) = (𝑓(+g𝐺)) ↔ 𝑔 = ))
4027, 31, 33, 36, 39syl13anc 1374 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(+g𝐺)𝑔) = (𝑓(+g𝐺)) ↔ 𝑔 = ))
4126, 40bitrd 279 . . . . . 6 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ 𝑔 = ))
4241biimpd 229 . . . . 5 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
4342ralrimivvva 3176 . . . 4 ((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
4414, 43mpbiran3d 48807 . . 3 (𝜑 → (𝑓 ∈ (𝑋(Mono‘𝐶)𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
4544eqrdv 2728 . 2 (𝜑 → (𝑋(Mono‘𝐶)𝑌) = (𝑋(Hom ‘𝐶)𝑌))
46 grptcmon.m . . 3 (𝜑𝑀 = (Mono‘𝐶))
4746oveqd 7358 . 2 (𝜑 → (𝑋𝑀𝑌) = (𝑋(Mono‘𝐶)𝑌))
48 grptcmon.h . . 3 (𝜑𝐻 = (Hom ‘𝐶))
4948oveqd 7358 . 2 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
5045, 47, 493eqtr4d 2775 1 (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wral 3045  cop 4580  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  Hom chom 17164  compcco 17165  Monocmon 17627  Mndcmnd 18634  Grpcgrp 18838  MndToCatcmndtc 49588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-ot 4583  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-slot 17085  df-ndx 17097  df-base 17113  df-hom 17177  df-cco 17178  df-0g 17337  df-cat 17566  df-cid 17567  df-mon 17629  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-mndtc 49589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator