Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grptcmon Structured version   Visualization version   GIF version

Theorem grptcmon 46263
Description: All morphisms in a category converted from a group are monomorphisms. (Contributed by Zhi Wang, 23-Sep-2024.)
Hypotheses
Ref Expression
grptcmon.c (𝜑𝐶 = (MndToCat‘𝐺))
grptcmon.g (𝜑𝐺 ∈ Grp)
grptcmon.b (𝜑𝐵 = (Base‘𝐶))
grptcmon.x (𝜑𝑋𝐵)
grptcmon.y (𝜑𝑌𝐵)
grptcmon.h (𝜑𝐻 = (Hom ‘𝐶))
grptcmon.m (𝜑𝑀 = (Mono‘𝐶))
Assertion
Ref Expression
grptcmon (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌))

Proof of Theorem grptcmon
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2738 . . . . 5 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2738 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
4 eqid 2738 . . . . 5 (Mono‘𝐶) = (Mono‘𝐶)
5 grptcmon.c . . . . . 6 (𝜑𝐶 = (MndToCat‘𝐺))
6 grptcmon.g . . . . . . 7 (𝜑𝐺 ∈ Grp)
76grpmndd 18504 . . . . . 6 (𝜑𝐺 ∈ Mnd)
85, 7mndtccat 46261 . . . . 5 (𝜑𝐶 ∈ Cat)
9 grptcmon.x . . . . . 6 (𝜑𝑋𝐵)
10 grptcmon.b . . . . . 6 (𝜑𝐵 = (Base‘𝐶))
119, 10eleqtrd 2841 . . . . 5 (𝜑𝑋 ∈ (Base‘𝐶))
12 grptcmon.y . . . . . 6 (𝜑𝑌𝐵)
1312, 10eleqtrd 2841 . . . . 5 (𝜑𝑌 ∈ (Base‘𝐶))
141, 2, 3, 4, 8, 11, 13ismon2 17363 . . . 4 (𝜑 → (𝑓 ∈ (𝑋(Mono‘𝐶)𝑌) ↔ (𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))))
155ad2antrr 722 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐶 = (MndToCat‘𝐺))
167ad2antrr 722 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐺 ∈ Mnd)
1710ad2antrr 722 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐵 = (Base‘𝐶))
18 simpr1 1192 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑧 ∈ (Base‘𝐶))
1918, 17eleqtrrd 2842 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑧𝐵)
209ad2antrr 722 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑋𝐵)
2112ad2antrr 722 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑌𝐵)
22 eqidd 2739 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (comp‘𝐶) = (comp‘𝐶))
23 eqidd 2739 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌) = (⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌))
2415, 16, 17, 19, 20, 21, 22, 23mndtcco2 46259 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(+g𝐺)𝑔))
2515, 16, 17, 19, 20, 21, 22, 23mndtcco2 46259 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) = (𝑓(+g𝐺)))
2624, 25eqeq12d 2754 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ (𝑓(+g𝐺)𝑔) = (𝑓(+g𝐺))))
276ad2antrr 722 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝐺 ∈ Grp)
28 simpr2 1193 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
29 eqidd 2739 . . . . . . . . . 10 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (Hom ‘𝐶) = (Hom ‘𝐶))
3015, 16, 17, 19, 20, 29mndtchom 46257 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑧(Hom ‘𝐶)𝑋) = (Base‘𝐺))
3128, 30eleqtrd 2841 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑔 ∈ (Base‘𝐺))
32 simpr3 1194 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ∈ (𝑧(Hom ‘𝐶)𝑋))
3332, 30eleqtrd 2841 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ∈ (Base‘𝐺))
34 simplr 765 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌))
3515, 16, 17, 20, 21, 29mndtchom 46257 . . . . . . . . 9 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → (𝑋(Hom ‘𝐶)𝑌) = (Base‘𝐺))
3634, 35eleqtrd 2841 . . . . . . . 8 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → 𝑓 ∈ (Base‘𝐺))
37 eqid 2738 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
38 eqid 2738 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
3937, 38grplcan 18552 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑔 ∈ (Base‘𝐺) ∧ ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺))) → ((𝑓(+g𝐺)𝑔) = (𝑓(+g𝐺)) ↔ 𝑔 = ))
4027, 31, 33, 36, 39syl13anc 1370 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(+g𝐺)𝑔) = (𝑓(+g𝐺)) ↔ 𝑔 = ))
4126, 40bitrd 278 . . . . . 6 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) ↔ 𝑔 = ))
4241biimpd 228 . . . . 5 (((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) ∧ (𝑧 ∈ (Base‘𝐶) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ∧ ∈ (𝑧(Hom ‘𝐶)𝑋))) → ((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
4342ralrimivvva 3115 . . . 4 ((𝜑𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)) → ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)∀ ∈ (𝑧(Hom ‘𝐶)𝑋)((𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)𝑔) = (𝑓(⟨𝑧, 𝑋⟩(comp‘𝐶)𝑌)) → 𝑔 = ))
4414, 43mpbiran3d 46030 . . 3 (𝜑 → (𝑓 ∈ (𝑋(Mono‘𝐶)𝑌) ↔ 𝑓 ∈ (𝑋(Hom ‘𝐶)𝑌)))
4544eqrdv 2736 . 2 (𝜑 → (𝑋(Mono‘𝐶)𝑌) = (𝑋(Hom ‘𝐶)𝑌))
46 grptcmon.m . . 3 (𝜑𝑀 = (Mono‘𝐶))
4746oveqd 7272 . 2 (𝜑 → (𝑋𝑀𝑌) = (𝑋(Mono‘𝐶)𝑌))
48 grptcmon.h . . 3 (𝜑𝐻 = (Hom ‘𝐶))
4948oveqd 7272 . 2 (𝜑 → (𝑋𝐻𝑌) = (𝑋(Hom ‘𝐶)𝑌))
5045, 47, 493eqtr4d 2788 1 (𝜑 → (𝑋𝑀𝑌) = (𝑋𝐻𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cop 4564  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Hom chom 16899  compcco 16900  Monocmon 17357  Mndcmnd 18300  Grpcgrp 18492  MndToCatcmndtc 46250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-hom 16912  df-cco 16913  df-0g 17069  df-cat 17294  df-cid 17295  df-mon 17359  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mndtc 46251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator