| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfmoeu 2529 mopick2 2630 2eu6 2650 cgsexg 3489 cgsex2g 3490 cgsex4g 3491 cgsex4gOLD 3492 reximdva0 4314 difsn 4758 preq12b 4810 elinxp 5979 ssrnres 6139 ordtr2 6365 elunirn 7207 fnoprabg 7492 tz7.49 8390 omord 8509 ficard 10494 fpwwe2lem11 10570 1idpr 10958 xrsupsslem 13243 xrinfmsslem 13244 fzospliti 13628 sqrt2irr 16193 algcvga 16525 prmind2 16631 infpn2 16860 grpinveu 18882 1stcrest 23316 fgss2 23737 fgcl 23741 filufint 23783 metrest 24388 reconnlem2 24692 plydivex 26181 rtprmirr 26646 ftalem3 26961 chtub 27099 lgsqrmodndvds 27240 2sqlem10 27315 dchrisum0flb 27397 pntpbnd1 27473 nolesgn2o 27559 nosupbnd1lem4 27599 noinfbnd1lem4 27614 noetalem1 27629 clwwlkn1loopb 29945 2pthfrgrrn2 30185 grpoidinvlem3 30408 grpoinveu 30421 elim2ifim 32447 iocinif 32677 qsxpid 33306 tpr2rico 33875 bnj168 34693 ellcsrspsn 35601 dfon2lem8 35751 nn0prpwlem 36283 bj-opelidres 37122 difunieq 37335 voliunnfl 37631 dalem20 39660 elpaddn0 39767 cdleme25a 40320 cdleme29ex 40341 cdlemefr29exN 40369 dibglbN 41133 dihlsscpre 41201 lcfl7N 41468 mapdh9a 41756 mapdh9aOLDN 41757 hdmap11lem2 41809 eu6w 42637 sqrtcval 43603 ax6e2eq 44520 eliin2f 45071 clnbgr3stgrgrlic 47984 itschlc0xyqsol1 48728 mpbiran3d 48758 |
| Copyright terms: Public domain | W3C validator |