| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfmoeu 2530 mopick2 2631 2eu6 2651 cgsexg 3495 cgsex2g 3496 cgsex4g 3497 cgsex4gOLD 3498 reximdva0 4321 difsn 4765 preq12b 4817 elinxp 5993 ssrnres 6154 ordtr2 6380 elunirn 7228 fnoprabg 7515 tz7.49 8416 omord 8535 ficard 10525 fpwwe2lem11 10601 1idpr 10989 xrsupsslem 13274 xrinfmsslem 13275 fzospliti 13659 sqrt2irr 16224 algcvga 16556 prmind2 16662 infpn2 16891 grpinveu 18913 1stcrest 23347 fgss2 23768 fgcl 23772 filufint 23814 metrest 24419 reconnlem2 24723 plydivex 26212 rtprmirr 26677 ftalem3 26992 chtub 27130 lgsqrmodndvds 27271 2sqlem10 27346 dchrisum0flb 27428 pntpbnd1 27504 nolesgn2o 27590 nosupbnd1lem4 27630 noinfbnd1lem4 27645 noetalem1 27660 clwwlkn1loopb 29979 2pthfrgrrn2 30219 grpoidinvlem3 30442 grpoinveu 30455 elim2ifim 32481 iocinif 32711 qsxpid 33340 tpr2rico 33909 bnj168 34727 ellcsrspsn 35635 dfon2lem8 35785 nn0prpwlem 36317 bj-opelidres 37156 difunieq 37369 voliunnfl 37665 dalem20 39694 elpaddn0 39801 cdleme25a 40354 cdleme29ex 40375 cdlemefr29exN 40403 dibglbN 41167 dihlsscpre 41235 lcfl7N 41502 mapdh9a 41790 mapdh9aOLDN 41791 hdmap11lem2 41843 eu6w 42671 sqrtcval 43637 ax6e2eq 44554 eliin2f 45105 clnbgr3stgrgrlic 48015 itschlc0xyqsol1 48759 mpbiran3d 48789 |
| Copyright terms: Public domain | W3C validator |