![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: dfmoeu 2531 mopick2 2634 2eu6 2653 cgsexg 3519 cgsex2g 3520 cgsex4g 3521 cgsex4gOLD 3522 cgsex4gOLDOLD 3523 ss2abdv 4060 reximdva0 4351 difsn 4801 preq12b 4851 elinxp 6018 ssrnres 6175 ordtr2 6406 elunirn 7247 fnoprabg 7528 tz7.49 8442 omord 8565 ficard 10557 fpwwe2lem11 10633 1idpr 11021 xrsupsslem 13283 xrinfmsslem 13284 fzospliti 13661 sqrt2irr 16189 algcvga 16513 prmind2 16619 infpn2 16843 grpinveu 18856 1stcrest 22949 fgss2 23370 fgcl 23374 filufint 23416 metrest 24025 reconnlem2 24335 plydivex 25802 ftalem3 26569 chtub 26705 lgsqrmodndvds 26846 2sqlem10 26921 dchrisum0flb 27003 pntpbnd1 27079 nolesgn2o 27164 nosupbnd1lem4 27204 noinfbnd1lem4 27219 noetalem1 27234 clwwlkn1loopb 29286 2pthfrgrrn2 29526 grpoidinvlem3 29747 grpoinveu 29760 elim2ifim 31765 iocinif 31980 qsxpid 32463 tpr2rico 32881 bnj168 33730 dfon2lem8 34751 nn0prpwlem 35196 bj-opelidres 36031 difunieq 36244 voliunnfl 36521 dalem20 38553 elpaddn0 38660 cdleme25a 39213 cdleme29ex 39234 cdlemefr29exN 39262 dibglbN 40026 dihlsscpre 40094 lcfl7N 40361 mapdh9a 40649 mapdh9aOLDN 40650 hdmap11lem2 40702 rtprmirr 41234 sqrtcval 42378 ax6e2eq 43304 eliin2f 43779 itschlc0xyqsol1 47406 mpbiran3d 47436 |
Copyright terms: Public domain | W3C validator |