![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: dfmoeu 2539 mopick2 2640 2eu6 2660 cgsexg 3536 cgsex2g 3537 cgsex4g 3538 cgsex4gOLD 3539 reximdva0 4378 difsn 4823 preq12b 4875 elinxp 6048 ssrnres 6209 ordtr2 6439 elunirn 7288 fnoprabg 7573 tz7.49 8501 omord 8624 ficard 10634 fpwwe2lem11 10710 1idpr 11098 xrsupsslem 13369 xrinfmsslem 13370 fzospliti 13748 sqrt2irr 16297 algcvga 16626 prmind2 16732 infpn2 16960 grpinveu 19014 1stcrest 23482 fgss2 23903 fgcl 23907 filufint 23949 metrest 24558 reconnlem2 24868 plydivex 26357 rtprmirr 26821 ftalem3 27136 chtub 27274 lgsqrmodndvds 27415 2sqlem10 27490 dchrisum0flb 27572 pntpbnd1 27648 nolesgn2o 27734 nosupbnd1lem4 27774 noinfbnd1lem4 27789 noetalem1 27804 clwwlkn1loopb 30075 2pthfrgrrn2 30315 grpoidinvlem3 30538 grpoinveu 30551 elim2ifim 32568 iocinif 32786 qsxpid 33355 tpr2rico 33858 bnj168 34706 ellcsrspsn 35609 dfon2lem8 35754 nn0prpwlem 36288 bj-opelidres 37127 difunieq 37340 voliunnfl 37624 dalem20 39650 elpaddn0 39757 cdleme25a 40310 cdleme29ex 40331 cdlemefr29exN 40359 dibglbN 41123 dihlsscpre 41191 lcfl7N 41458 mapdh9a 41746 mapdh9aOLDN 41747 hdmap11lem2 41799 eu6w 42631 sqrtcval 43603 ax6e2eq 44528 eliin2f 45006 itschlc0xyqsol1 48500 mpbiran3d 48530 |
Copyright terms: Public domain | W3C validator |