Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: dfmoeu 2536 mopick2 2639 2eu6 2658 cgsexg 3464 cgsex2g 3465 cgsex4g 3466 cgsex4gOLD 3467 ss2abdv 3993 reximdva0 4282 difsn 4728 preq12b 4778 elinxp 5918 ssrnres 6070 ordtr2 6295 elunirn 7106 fnoprabg 7375 tz7.49 8246 omord 8361 dftrpred3g 9412 ficard 10252 fpwwe2lem11 10328 1idpr 10716 xrsupsslem 12970 xrinfmsslem 12971 fzospliti 13347 sqrt2irr 15886 algcvga 16212 prmind2 16318 infpn2 16542 grpinveu 18529 1stcrest 22512 fgss2 22933 fgcl 22937 filufint 22979 metrest 23586 reconnlem2 23896 plydivex 25362 ftalem3 26129 chtub 26265 lgsqrmodndvds 26406 2sqlem10 26481 dchrisum0flb 26563 pntpbnd1 26639 clwwlkn1loopb 28308 2pthfrgrrn2 28548 grpoidinvlem3 28769 grpoinveu 28782 elim2ifim 30789 iocinif 31004 qsxpid 31460 tpr2rico 31764 bnj168 32609 dfon2lem8 33672 nolesgn2o 33801 nosupbnd1lem4 33841 noinfbnd1lem4 33856 noetalem1 33871 nn0prpwlem 34438 bj-opelidres 35259 difunieq 35472 voliunnfl 35748 dalem20 37634 elpaddn0 37741 cdleme25a 38294 cdleme29ex 38315 cdlemefr29exN 38343 dibglbN 39107 dihlsscpre 39175 lcfl7N 39442 mapdh9a 39730 mapdh9aOLDN 39731 hdmap11lem2 39783 rtprmirr 40268 sqrtcval 41138 ax6e2eq 42066 eliin2f 42543 itschlc0xyqsol1 46000 mpbiran3d 46030 |
Copyright terms: Public domain | W3C validator |