| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfmoeu 2529 mopick2 2630 2eu6 2650 cgsexg 3483 cgsex2g 3484 cgsex4g 3485 cgsex4gOLD 3486 reximdva0 4308 difsn 4752 preq12b 4804 elinxp 5974 ssrnres 6131 ordtr2 6356 elunirn 7191 fnoprabg 7476 tz7.49 8374 omord 8493 ficard 10478 fpwwe2lem11 10554 1idpr 10942 xrsupsslem 13228 xrinfmsslem 13229 fzospliti 13613 sqrt2irr 16177 algcvga 16509 prmind2 16615 infpn2 16844 grpinveu 18872 1stcrest 23357 fgss2 23778 fgcl 23782 filufint 23824 metrest 24429 reconnlem2 24733 plydivex 26222 rtprmirr 26687 ftalem3 27002 chtub 27140 lgsqrmodndvds 27281 2sqlem10 27356 dchrisum0flb 27438 pntpbnd1 27514 nolesgn2o 27600 nosupbnd1lem4 27640 noinfbnd1lem4 27655 noetalem1 27670 clwwlkn1loopb 30006 2pthfrgrrn2 30246 grpoidinvlem3 30469 grpoinveu 30482 elim2ifim 32508 iocinif 32743 qsxpid 33318 tpr2rico 33898 bnj168 34716 ellcsrspsn 35633 dfon2lem8 35783 nn0prpwlem 36315 bj-opelidres 37154 difunieq 37367 voliunnfl 37663 dalem20 39692 elpaddn0 39799 cdleme25a 40352 cdleme29ex 40373 cdlemefr29exN 40401 dibglbN 41165 dihlsscpre 41233 lcfl7N 41500 mapdh9a 41788 mapdh9aOLDN 41789 hdmap11lem2 41841 eu6w 42669 sqrtcval 43634 ax6e2eq 44551 eliin2f 45102 clnbgr3stgrgrlic 48024 itschlc0xyqsol1 48771 mpbiran3d 48801 |
| Copyright terms: Public domain | W3C validator |