Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 513 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: dfmoeu 2536 mopick2 2639 2eu6 2658 cgsexg 3474 cgsex2g 3475 cgsex4g 3476 cgsex4gOLD 3477 ss2abdv 3997 reximdva0 4285 difsn 4731 preq12b 4781 elinxp 5929 ssrnres 6081 ordtr2 6310 elunirn 7124 fnoprabg 7397 tz7.49 8276 omord 8399 ficard 10321 fpwwe2lem11 10397 1idpr 10785 xrsupsslem 13041 xrinfmsslem 13042 fzospliti 13419 sqrt2irr 15958 algcvga 16284 prmind2 16390 infpn2 16614 grpinveu 18614 1stcrest 22604 fgss2 23025 fgcl 23029 filufint 23071 metrest 23680 reconnlem2 23990 plydivex 25457 ftalem3 26224 chtub 26360 lgsqrmodndvds 26501 2sqlem10 26576 dchrisum0flb 26658 pntpbnd1 26734 clwwlkn1loopb 28407 2pthfrgrrn2 28647 grpoidinvlem3 28868 grpoinveu 28881 elim2ifim 30888 iocinif 31102 qsxpid 31558 tpr2rico 31862 bnj168 32709 dfon2lem8 33766 nolesgn2o 33874 nosupbnd1lem4 33914 noinfbnd1lem4 33929 noetalem1 33944 nn0prpwlem 34511 bj-opelidres 35332 difunieq 35545 voliunnfl 35821 dalem20 37707 elpaddn0 37814 cdleme25a 38367 cdleme29ex 38388 cdlemefr29exN 38416 dibglbN 39180 dihlsscpre 39248 lcfl7N 39515 mapdh9a 39803 mapdh9aOLDN 39804 hdmap11lem2 39856 rtprmirr 40347 sqrtcval 41249 ax6e2eq 42177 eliin2f 42654 itschlc0xyqsol1 46112 mpbiran3d 46142 |
Copyright terms: Public domain | W3C validator |