![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 514 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: dfmoeu 2531 mopick2 2634 2eu6 2653 cgsexg 3519 cgsex2g 3520 cgsex4g 3521 cgsex4gOLD 3522 cgsex4gOLDOLD 3523 ss2abdv 4061 reximdva0 4352 difsn 4802 preq12b 4852 elinxp 6020 ssrnres 6178 ordtr2 6409 elunirn 7250 fnoprabg 7531 tz7.49 8445 omord 8568 ficard 10560 fpwwe2lem11 10636 1idpr 11024 xrsupsslem 13286 xrinfmsslem 13287 fzospliti 13664 sqrt2irr 16192 algcvga 16516 prmind2 16622 infpn2 16846 grpinveu 18859 1stcrest 22957 fgss2 23378 fgcl 23382 filufint 23424 metrest 24033 reconnlem2 24343 plydivex 25810 ftalem3 26579 chtub 26715 lgsqrmodndvds 26856 2sqlem10 26931 dchrisum0flb 27013 pntpbnd1 27089 nolesgn2o 27174 nosupbnd1lem4 27214 noinfbnd1lem4 27229 noetalem1 27244 clwwlkn1loopb 29296 2pthfrgrrn2 29536 grpoidinvlem3 29759 grpoinveu 29772 elim2ifim 31777 iocinif 31992 qsxpid 32474 tpr2rico 32892 bnj168 33741 dfon2lem8 34762 nn0prpwlem 35207 bj-opelidres 36042 difunieq 36255 voliunnfl 36532 dalem20 38564 elpaddn0 38671 cdleme25a 39224 cdleme29ex 39245 cdlemefr29exN 39273 dibglbN 40037 dihlsscpre 40105 lcfl7N 40372 mapdh9a 40660 mapdh9aOLDN 40661 hdmap11lem2 40713 rtprmirr 41237 sqrtcval 42392 ax6e2eq 43318 eliin2f 43793 itschlc0xyqsol1 47452 mpbiran3d 47482 |
Copyright terms: Public domain | W3C validator |