| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfmoeu 2533 mopick2 2634 2eu6 2654 cgsexg 3482 cgsex2g 3483 cgsex4g 3484 cgsex4gOLD 3485 reximdva0 4304 difsn 4751 preq12b 4803 elinxp 5975 ssrnres 6133 ordtr2 6359 elunirn 7194 fnoprabg 7478 tz7.49 8373 omord 8492 ficard 10467 fpwwe2lem11 10543 1idpr 10931 xrsupsslem 13213 xrinfmsslem 13214 fzospliti 13598 sqrt2irr 16165 algcvga 16497 prmind2 16603 infpn2 16832 grpinveu 18895 1stcrest 23388 fgss2 23809 fgcl 23813 filufint 23855 metrest 24459 reconnlem2 24763 plydivex 26252 rtprmirr 26717 ftalem3 27032 chtub 27170 lgsqrmodndvds 27311 2sqlem10 27386 dchrisum0flb 27468 pntpbnd1 27544 nolesgn2o 27630 nosupbnd1lem4 27670 noinfbnd1lem4 27685 noetalem1 27700 clwwlkn1loopb 30044 2pthfrgrrn2 30284 grpoidinvlem3 30507 grpoinveu 30520 elim2ifim 32546 iocinif 32789 qsxpid 33371 tpr2rico 33997 bnj168 34814 ellcsrspsn 35757 dfon2lem8 35904 nn0prpwlem 36438 bj-opelidres 37278 difunieq 37491 voliunnfl 37777 dalem20 39865 elpaddn0 39972 cdleme25a 40525 cdleme29ex 40546 cdlemefr29exN 40574 dibglbN 41338 dihlsscpre 41406 lcfl7N 41673 mapdh9a 41961 mapdh9aOLDN 41962 hdmap11lem2 42014 eu6w 42834 sqrtcval 43798 ax6e2eq 44714 eliin2f 45264 clnbgr3stgrgrlic 48182 itschlc0xyqsol1 48928 mpbiran3d 48958 |
| Copyright terms: Public domain | W3C validator |