| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfmoeu 2531 mopick2 2632 2eu6 2652 cgsexg 3481 cgsex2g 3482 cgsex4g 3483 cgsex4gOLD 3484 reximdva0 4300 difsn 4745 preq12b 4797 elinxp 5963 ssrnres 6120 ordtr2 6346 elunirn 7180 fnoprabg 7464 tz7.49 8359 omord 8478 ficard 10451 fpwwe2lem11 10527 1idpr 10915 xrsupsslem 13201 xrinfmsslem 13202 fzospliti 13586 sqrt2irr 16153 algcvga 16485 prmind2 16591 infpn2 16820 grpinveu 18882 1stcrest 23363 fgss2 23784 fgcl 23788 filufint 23830 metrest 24434 reconnlem2 24738 plydivex 26227 rtprmirr 26692 ftalem3 27007 chtub 27145 lgsqrmodndvds 27286 2sqlem10 27361 dchrisum0flb 27443 pntpbnd1 27519 nolesgn2o 27605 nosupbnd1lem4 27645 noinfbnd1lem4 27660 noetalem1 27675 clwwlkn1loopb 30015 2pthfrgrrn2 30255 grpoidinvlem3 30478 grpoinveu 30491 elim2ifim 32517 iocinif 32756 qsxpid 33319 tpr2rico 33917 bnj168 34734 ellcsrspsn 35677 dfon2lem8 35824 nn0prpwlem 36356 bj-opelidres 37195 difunieq 37408 voliunnfl 37704 dalem20 39732 elpaddn0 39839 cdleme25a 40392 cdleme29ex 40413 cdlemefr29exN 40441 dibglbN 41205 dihlsscpre 41273 lcfl7N 41540 mapdh9a 41828 mapdh9aOLDN 41829 hdmap11lem2 41881 eu6w 42709 sqrtcval 43674 ax6e2eq 44590 eliin2f 45141 clnbgr3stgrgrlic 48051 itschlc0xyqsol1 48798 mpbiran3d 48828 |
| Copyright terms: Public domain | W3C validator |