| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfmoeu 2529 mopick2 2630 2eu6 2650 cgsexg 3492 cgsex2g 3493 cgsex4g 3494 cgsex4gOLD 3495 reximdva0 4318 difsn 4762 preq12b 4814 elinxp 5990 ssrnres 6151 ordtr2 6377 elunirn 7225 fnoprabg 7512 tz7.49 8413 omord 8532 ficard 10518 fpwwe2lem11 10594 1idpr 10982 xrsupsslem 13267 xrinfmsslem 13268 fzospliti 13652 sqrt2irr 16217 algcvga 16549 prmind2 16655 infpn2 16884 grpinveu 18906 1stcrest 23340 fgss2 23761 fgcl 23765 filufint 23807 metrest 24412 reconnlem2 24716 plydivex 26205 rtprmirr 26670 ftalem3 26985 chtub 27123 lgsqrmodndvds 27264 2sqlem10 27339 dchrisum0flb 27421 pntpbnd1 27497 nolesgn2o 27583 nosupbnd1lem4 27623 noinfbnd1lem4 27638 noetalem1 27653 clwwlkn1loopb 29972 2pthfrgrrn2 30212 grpoidinvlem3 30435 grpoinveu 30448 elim2ifim 32474 iocinif 32704 qsxpid 33333 tpr2rico 33902 bnj168 34720 ellcsrspsn 35628 dfon2lem8 35778 nn0prpwlem 36310 bj-opelidres 37149 difunieq 37362 voliunnfl 37658 dalem20 39687 elpaddn0 39794 cdleme25a 40347 cdleme29ex 40368 cdlemefr29exN 40396 dibglbN 41160 dihlsscpre 41228 lcfl7N 41495 mapdh9a 41783 mapdh9aOLDN 41784 hdmap11lem2 41836 eu6w 42664 sqrtcval 43630 ax6e2eq 44547 eliin2f 45098 clnbgr3stgrgrlic 48011 itschlc0xyqsol1 48755 mpbiran3d 48785 |
| Copyright terms: Public domain | W3C validator |