| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version | ||
| Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 3 | 1, 2 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: dfmoeu 2535 mopick2 2636 2eu6 2656 cgsexg 3505 cgsex2g 3506 cgsex4g 3507 cgsex4gOLD 3508 reximdva0 4330 difsn 4774 preq12b 4826 elinxp 6006 ssrnres 6167 ordtr2 6397 elunirn 7243 fnoprabg 7530 tz7.49 8459 omord 8580 ficard 10579 fpwwe2lem11 10655 1idpr 11043 xrsupsslem 13323 xrinfmsslem 13324 fzospliti 13708 sqrt2irr 16267 algcvga 16598 prmind2 16704 infpn2 16933 grpinveu 18957 1stcrest 23391 fgss2 23812 fgcl 23816 filufint 23858 metrest 24463 reconnlem2 24767 plydivex 26257 rtprmirr 26722 ftalem3 27037 chtub 27175 lgsqrmodndvds 27316 2sqlem10 27391 dchrisum0flb 27473 pntpbnd1 27549 nolesgn2o 27635 nosupbnd1lem4 27675 noinfbnd1lem4 27690 noetalem1 27705 clwwlkn1loopb 30024 2pthfrgrrn2 30264 grpoidinvlem3 30487 grpoinveu 30500 elim2ifim 32526 iocinif 32758 qsxpid 33377 tpr2rico 33943 bnj168 34761 ellcsrspsn 35663 dfon2lem8 35808 nn0prpwlem 36340 bj-opelidres 37179 difunieq 37392 voliunnfl 37688 dalem20 39712 elpaddn0 39819 cdleme25a 40372 cdleme29ex 40393 cdlemefr29exN 40421 dibglbN 41185 dihlsscpre 41253 lcfl7N 41520 mapdh9a 41808 mapdh9aOLDN 41809 hdmap11lem2 41861 eu6w 42699 sqrtcval 43665 ax6e2eq 44582 eliin2f 45128 clnbgr3stgrgrlic 48024 itschlc0xyqsol1 48746 mpbiran3d 48776 |
| Copyright terms: Public domain | W3C validator |