Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinc Structured version   Visualization version   GIF version

Theorem functhinc 49441
Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 49005), and can be obtained from funcf2 17837, f002 48846, and ralrimivva 3181. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
Assertion
Ref Expression
functhinc (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
Distinct variable groups:   𝑤,𝐹,𝑧   𝑥,𝐹,𝑦   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑤,𝐽,𝑧   𝑥,𝐽,𝑦   𝑤,𝐵,𝑧   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem functhinc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.f . . . 4 (𝜑𝐹:𝐵𝐶)
2 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
3 functhinc.c . . . . . 6 𝐶 = (Base‘𝐸)
4 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
5 functhinc.j . . . . . 6 𝐽 = (Hom ‘𝐸)
6 eqid 2730 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2730 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
8 eqid 2730 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
9 eqid 2730 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
10 functhinc.d . . . . . 6 (𝜑𝐷 ∈ Cat)
11 functhinc.e . . . . . . 7 (𝜑𝐸 ∈ ThinCat)
1211thinccd 49416 . . . . . 6 (𝜑𝐸 ∈ Cat)
132, 3, 4, 5, 6, 7, 8, 9, 10, 12isfunc 17833 . . . . 5 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
14 3anass 1094 . . . . 5 ((𝐹:𝐵𝐶𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))) ↔ (𝐹:𝐵𝐶 ∧ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
1513, 14bitrdi 287 . . . 4 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶 ∧ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))))))
161, 15mpbirand 707 . . 3 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
17 funcf2lem 49074 . . . . 5 (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑣𝐵𝑢𝐵 (𝑣𝐺𝑢):(𝑣𝐻𝑢)⟶((𝐹𝑣)𝐽(𝐹𝑢))))
18 functhinc.k . . . . . 6 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
19 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → 𝑣𝐵)
20 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → 𝑢𝐵)
21 functhinc.1 . . . . . . . 8 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
2319, 20, 22functhinclem2 49438 . . . . . 6 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → (((𝐹𝑣)𝐽(𝐹𝑢)) = ∅ → (𝑣𝐻𝑢) = ∅))
242, 3, 4, 5, 11, 1, 18, 23functhinclem1 49437 . . . . 5 (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑣𝐵𝑢𝐵 (𝑣𝐺𝑢):(𝑣𝐻𝑢)⟶((𝐹𝑣)𝐽(𝐹𝑢))) ↔ 𝐺 = 𝐾))
2517, 24bitrid 283 . . . 4 (𝜑 → (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ↔ 𝐺 = 𝐾))
2625anbi1d 631 . . 3 (𝜑 → ((𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))) ↔ (𝐺 = 𝐾 ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
2716, 26bitrd 279 . 2 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐺 = 𝐾 ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
282, 3, 4, 5, 10, 11, 1, 18, 21, 6, 7, 8, 9functhinclem4 49440 . 2 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))
2927, 28mpbiran3d 48789 1 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  c0 4299  cop 4598   class class class wbr 5110   × cxp 5639   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  m cmap 8802  Xcixp 8873  Basecbs 17186  Hom chom 17238  compcco 17239  Catccat 17632  Idccid 17633   Func cfunc 17823  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-func 17827  df-thinc 49411
This theorem is referenced by:  functhincfun  49442  thincciso  49446  functermc  49501
  Copyright terms: Public domain W3C validator