Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinc Structured version   Visualization version   GIF version

Theorem functhinc 49433
Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 48997), and can be obtained from funcf2 17775, f002 48838, and ralrimivva 3172. (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
Assertion
Ref Expression
functhinc (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
Distinct variable groups:   𝑤,𝐹,𝑧   𝑥,𝐹,𝑦   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑤,𝐽,𝑧   𝑥,𝐽,𝑦   𝑤,𝐵,𝑧   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem functhinc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.f . . . 4 (𝜑𝐹:𝐵𝐶)
2 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
3 functhinc.c . . . . . 6 𝐶 = (Base‘𝐸)
4 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
5 functhinc.j . . . . . 6 𝐽 = (Hom ‘𝐸)
6 eqid 2729 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2729 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
8 eqid 2729 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
9 eqid 2729 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
10 functhinc.d . . . . . 6 (𝜑𝐷 ∈ Cat)
11 functhinc.e . . . . . . 7 (𝜑𝐸 ∈ ThinCat)
1211thinccd 49408 . . . . . 6 (𝜑𝐸 ∈ Cat)
132, 3, 4, 5, 6, 7, 8, 9, 10, 12isfunc 17771 . . . . 5 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
14 3anass 1094 . . . . 5 ((𝐹:𝐵𝐶𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))) ↔ (𝐹:𝐵𝐶 ∧ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
1513, 14bitrdi 287 . . . 4 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶 ∧ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))))))
161, 15mpbirand 707 . . 3 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
17 funcf2lem 49066 . . . . 5 (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑣𝐵𝑢𝐵 (𝑣𝐺𝑢):(𝑣𝐻𝑢)⟶((𝐹𝑣)𝐽(𝐹𝑢))))
18 functhinc.k . . . . . 6 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
19 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → 𝑣𝐵)
20 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → 𝑢𝐵)
21 functhinc.1 . . . . . . . 8 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
2221adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
2319, 20, 22functhinclem2 49430 . . . . . 6 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → (((𝐹𝑣)𝐽(𝐹𝑢)) = ∅ → (𝑣𝐻𝑢) = ∅))
242, 3, 4, 5, 11, 1, 18, 23functhinclem1 49429 . . . . 5 (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑣𝐵𝑢𝐵 (𝑣𝐺𝑢):(𝑣𝐻𝑢)⟶((𝐹𝑣)𝐽(𝐹𝑢))) ↔ 𝐺 = 𝐾))
2517, 24bitrid 283 . . . 4 (𝜑 → (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ↔ 𝐺 = 𝐾))
2625anbi1d 631 . . 3 (𝜑 → ((𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))) ↔ (𝐺 = 𝐾 ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
2716, 26bitrd 279 . 2 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐺 = 𝐾 ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
282, 3, 4, 5, 10, 11, 1, 18, 21, 6, 7, 8, 9functhinclem4 49432 . 2 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))
2927, 28mpbiran3d 48781 1 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  c0 4284  cop 4583   class class class wbr 5092   × cxp 5617   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  1st c1st 7922  2nd c2nd 7923  m cmap 8753  Xcixp 8824  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Idccid 17571   Func cfunc 17761  ThinCatcthinc 49402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-cid 17575  df-func 17765  df-thinc 49403
This theorem is referenced by:  functhincfun  49434  thincciso  49438  functermc  49493
  Copyright terms: Public domain W3C validator