Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  functhinc Structured version   Visualization version   GIF version

Theorem functhinc 45942
Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered (catprs2 45909). (Contributed by Zhi Wang, 1-Oct-2024.)
Hypotheses
Ref Expression
functhinc.b 𝐵 = (Base‘𝐷)
functhinc.c 𝐶 = (Base‘𝐸)
functhinc.h 𝐻 = (Hom ‘𝐷)
functhinc.j 𝐽 = (Hom ‘𝐸)
functhinc.d (𝜑𝐷 ∈ Cat)
functhinc.e (𝜑𝐸 ∈ ThinCat)
functhinc.f (𝜑𝐹:𝐵𝐶)
functhinc.k 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
functhinc.1 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
Assertion
Ref Expression
functhinc (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
Distinct variable groups:   𝑤,𝐹,𝑧   𝑥,𝐹,𝑦   𝑤,𝐻,𝑧   𝑥,𝐻,𝑦   𝑤,𝐽,𝑧   𝑥,𝐽,𝑦   𝑤,𝐵,𝑧   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝐺(𝑥,𝑦,𝑧,𝑤)   𝐾(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem functhinc
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 functhinc.f . . . 4 (𝜑𝐹:𝐵𝐶)
2 functhinc.b . . . . . 6 𝐵 = (Base‘𝐷)
3 functhinc.c . . . . . 6 𝐶 = (Base‘𝐸)
4 functhinc.h . . . . . 6 𝐻 = (Hom ‘𝐷)
5 functhinc.j . . . . . 6 𝐽 = (Hom ‘𝐸)
6 eqid 2736 . . . . . 6 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2736 . . . . . 6 (Id‘𝐸) = (Id‘𝐸)
8 eqid 2736 . . . . . 6 (comp‘𝐷) = (comp‘𝐷)
9 eqid 2736 . . . . . 6 (comp‘𝐸) = (comp‘𝐸)
10 functhinc.d . . . . . 6 (𝜑𝐷 ∈ Cat)
11 functhinc.e . . . . . . 7 (𝜑𝐸 ∈ ThinCat)
1211thinccd 45922 . . . . . 6 (𝜑𝐸 ∈ Cat)
132, 3, 4, 5, 6, 7, 8, 9, 10, 12isfunc 17324 . . . . 5 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
14 3anass 1097 . . . . 5 ((𝐹:𝐵𝐶𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))) ↔ (𝐹:𝐵𝐶 ∧ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
1513, 14bitrdi 290 . . . 4 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵𝐶 ∧ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))))))
161, 15mpbirand 707 . . 3 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
17 funcf2lem 45915 . . . . 5 (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ↔ (𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑣𝐵𝑢𝐵 (𝑣𝐺𝑢):(𝑣𝐻𝑢)⟶((𝐹𝑣)𝐽(𝐹𝑢))))
18 functhinc.k . . . . . 6 𝐾 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝐻𝑦) × ((𝐹𝑥)𝐽(𝐹𝑦))))
19 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → 𝑣𝐵)
20 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → 𝑢𝐵)
21 functhinc.1 . . . . . . . 8 (𝜑 → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
2221adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → ∀𝑧𝐵𝑤𝐵 (((𝐹𝑧)𝐽(𝐹𝑤)) = ∅ → (𝑧𝐻𝑤) = ∅))
2319, 20, 22functhinclem2 45939 . . . . . 6 ((𝜑 ∧ (𝑣𝐵𝑢𝐵)) → (((𝐹𝑣)𝐽(𝐹𝑢)) = ∅ → (𝑣𝐻𝑢) = ∅))
242, 3, 4, 5, 11, 1, 18, 23functhinclem1 45938 . . . . 5 (𝜑 → ((𝐺 ∈ V ∧ 𝐺 Fn (𝐵 × 𝐵) ∧ ∀𝑣𝐵𝑢𝐵 (𝑣𝐺𝑢):(𝑣𝐻𝑢)⟶((𝐹𝑣)𝐽(𝐹𝑢))) ↔ 𝐺 = 𝐾))
2517, 24syl5bb 286 . . . 4 (𝜑 → (𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ↔ 𝐺 = 𝐾))
2625anbi1d 633 . . 3 (𝜑 → ((𝐺X𝑐 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑐))𝐽(𝐹‘(2nd𝑐))) ↑m (𝐻𝑐)) ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓)))) ↔ (𝐺 = 𝐾 ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
2716, 26bitrd 282 . 2 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐺 = 𝐾 ∧ ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))))
282, 3, 4, 5, 10, 11, 1, 18, 21, 6, 7, 8, 9functhinclem4 45941 . 2 ((𝜑𝐺 = 𝐾) → ∀𝑎𝐵 (((𝑎𝐺𝑎)‘((Id‘𝐷)‘𝑎)) = ((Id‘𝐸)‘(𝐹𝑎)) ∧ ∀𝑏𝐵𝑐𝐵𝑓 ∈ (𝑎𝐻𝑏)∀𝑔 ∈ (𝑏𝐻𝑐)((𝑎𝐺𝑐)‘(𝑔(⟨𝑎, 𝑏⟩(comp‘𝐷)𝑐)𝑓)) = (((𝑏𝐺𝑐)‘𝑔)(⟨(𝐹𝑎), (𝐹𝑏)⟩(comp‘𝐸)(𝐹𝑐))((𝑎𝐺𝑏)‘𝑓))))
2927, 28mpbiran3d 45758 1 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺𝐺 = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  Vcvv 3398  c0 4223  cop 4533   class class class wbr 5039   × cxp 5534   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  cmpo 7193  1st c1st 7737  2nd c2nd 7738  m cmap 8486  Xcixp 8556  Basecbs 16666  Hom chom 16760  compcco 16761  Catccat 17121  Idccid 17122   Func cfunc 17314  ThinCatcthinc 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-map 8488  df-ixp 8557  df-cat 17125  df-cid 17126  df-func 17318  df-thinc 45917
This theorem is referenced by:  thincciso  45946
  Copyright terms: Public domain W3C validator