Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpteq2dfa Structured version   Visualization version   GIF version

Theorem mpteq2dfa 45312
Description: Slightly more general equality inference for the maps-to notation. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
mpteq2dfa.1 𝑥𝜑
mpteq2dfa.2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
Assertion
Ref Expression
mpteq2dfa (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))

Proof of Theorem mpteq2dfa
StepHypRef Expression
1 mpteq2dfa.1 . 2 𝑥𝜑
2 mpteq2dfa.2 . 2 ((𝜑𝑥𝐴) → 𝐵 = 𝐶)
31, 2mpteq2da 5181 1 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  cmpt 5170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-opab 5152  df-mpt 5171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator