| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptif | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| Ref | Expression |
|---|---|
| dmmptif.1 | ⊢ Ⅎ𝑥𝐴 |
| dmmptif.2 | ⊢ 𝐵 ∈ V |
| dmmptif.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptif | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dmmptif.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | dmmptif.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 1, 2, 3 | fnmptif 45310 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 5 | fndm 6584 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 ↦ cmpt 5170 dom cdm 5614 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-fun 6483 df-fn 6484 |
| This theorem is referenced by: adddmmbl2 46880 muldmmbl2 46882 smfdivdmmbl2 46887 |
| Copyright terms: Public domain | W3C validator |