![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptif | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
dmmptif.1 | ⊢ Ⅎ𝑥𝐴 |
dmmptif.2 | ⊢ 𝐵 ∈ V |
dmmptif.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptif | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dmmptif.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | dmmptif.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 1, 2, 3 | fnmptif 45110 | . 2 ⊢ 𝐹 Fn 𝐴 |
5 | fndm 6681 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2103 Ⅎwnfc 2888 Vcvv 3482 ↦ cmpt 5252 dom cdm 5699 Fn wfn 6567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5320 ax-nul 5327 ax-pr 5450 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ral 3064 df-rex 3073 df-rab 3439 df-v 3484 df-dif 3973 df-un 3975 df-ss 3987 df-nul 4348 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-fun 6574 df-fn 6575 |
This theorem is referenced by: adddmmbl2 46690 muldmmbl2 46692 smfdivdmmbl2 46697 |
Copyright terms: Public domain | W3C validator |