![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptif | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
dmmptif.1 | ⊢ Ⅎ𝑥𝐴 |
dmmptif.2 | ⊢ 𝐵 ∈ V |
dmmptif.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptif | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dmmptif.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | dmmptif.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 1, 2, 3 | fnmptif 45223 | . 2 ⊢ 𝐹 Fn 𝐴 |
5 | fndm 6676 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 Ⅎwnfc 2889 Vcvv 3479 ↦ cmpt 5232 dom cdm 5690 Fn wfn 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-fun 6568 df-fn 6569 |
This theorem is referenced by: adddmmbl2 46801 muldmmbl2 46803 smfdivdmmbl2 46808 |
Copyright terms: Public domain | W3C validator |