Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptif | Structured version Visualization version GIF version |
Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
dmmptif.1 | ⊢ Ⅎ𝑥𝐴 |
dmmptif.2 | ⊢ 𝐵 ∈ V |
dmmptif.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
dmmptif | ⊢ dom 𝐹 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmptif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | dmmptif.2 | . . 3 ⊢ 𝐵 ∈ V | |
3 | dmmptif.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 1, 2, 3 | fnmptif 43034 | . 2 ⊢ 𝐹 Fn 𝐴 |
5 | fndm 6567 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
6 | 4, 5 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2884 Vcvv 3437 ↦ cmpt 5164 dom cdm 5600 Fn wfn 6453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-fun 6460 df-fn 6461 |
This theorem is referenced by: adddmmbl2 44602 muldmmbl2 44604 smfdivdmmbl2 44609 |
Copyright terms: Public domain | W3C validator |