Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptif Structured version   Visualization version   GIF version

Theorem dmmptif 45232
Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
dmmptif.1 𝑥𝐴
dmmptif.2 𝐵 ∈ V
dmmptif.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptif dom 𝐹 = 𝐴

Proof of Theorem dmmptif
StepHypRef Expression
1 dmmptif.1 . . 3 𝑥𝐴
2 dmmptif.2 . . 3 𝐵 ∈ V
3 dmmptif.3 . . 3 𝐹 = (𝑥𝐴𝐵)
41, 2, 3fnmptif 45231 . 2 𝐹 Fn 𝐴
5 fndm 6629 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
64, 5ax-mp 5 1 dom 𝐹 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wnfc 2878  Vcvv 3455  cmpt 5196  dom cdm 5646   Fn wfn 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-fun 6521  df-fn 6522
This theorem is referenced by:  adddmmbl2  46805  muldmmbl2  46807  smfdivdmmbl2  46812
  Copyright terms: Public domain W3C validator