| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmptif | Structured version Visualization version GIF version | ||
| Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
| Ref | Expression |
|---|---|
| dmmptif.1 | ⊢ Ⅎ𝑥𝐴 |
| dmmptif.2 | ⊢ 𝐵 ∈ V |
| dmmptif.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| dmmptif | ⊢ dom 𝐹 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | dmmptif.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 3 | dmmptif.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 1, 2, 3 | fnmptif 45217 | . 2 ⊢ 𝐹 Fn 𝐴 |
| 5 | fndm 6652 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 6 | 4, 5 | ax-mp 5 | 1 ⊢ dom 𝐹 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2882 Vcvv 3464 ↦ cmpt 5207 dom cdm 5667 Fn wfn 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-fun 6544 df-fn 6545 |
| This theorem is referenced by: adddmmbl2 46794 muldmmbl2 46796 smfdivdmmbl2 46801 |
| Copyright terms: Public domain | W3C validator |