Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmptif Structured version   Visualization version   GIF version

Theorem dmmptif 43035
Description: Domain of the mapping operation. (Contributed by Glauco Siliprandi, 21-Dec-2024.)
Hypotheses
Ref Expression
dmmptif.1 𝑥𝐴
dmmptif.2 𝐵 ∈ V
dmmptif.3 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
dmmptif dom 𝐹 = 𝐴

Proof of Theorem dmmptif
StepHypRef Expression
1 dmmptif.1 . . 3 𝑥𝐴
2 dmmptif.2 . . 3 𝐵 ∈ V
3 dmmptif.3 . . 3 𝐹 = (𝑥𝐴𝐵)
41, 2, 3fnmptif 43034 . 2 𝐹 Fn 𝐴
5 fndm 6567 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
64, 5ax-mp 5 1 dom 𝐹 = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  wnfc 2884  Vcvv 3437  cmpt 5164  dom cdm 5600   Fn wfn 6453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-fun 6460  df-fn 6461
This theorem is referenced by:  adddmmbl2  44602  muldmmbl2  44604  smfdivdmmbl2  44609
  Copyright terms: Public domain W3C validator