Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmpt1 Structured version   Visualization version   GIF version

Theorem dmmpt1 43063
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
dmmpt1.x 𝑥𝜑
dmmpt1.1 𝑥𝐵
dmmpt1.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmpt1 (𝜑 → dom (𝑥𝐵𝐶) = 𝐵)

Proof of Theorem dmmpt1
StepHypRef Expression
1 dmmpt1.x . 2 𝑥𝜑
2 dmmpt1.1 . 2 𝑥𝐵
3 eqid 2736 . 2 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
4 dmmpt1.c . 2 ((𝜑𝑥𝐵) → 𝐶𝑉)
51, 2, 3, 4dmmptdff 43009 1 (𝜑 → dom (𝑥𝐵𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wnf 1784  wcel 2105  wnfc 2884  cmpt 5169  dom cdm 5607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-opab 5149  df-mpt 5170  df-xp 5613  df-rel 5614  df-cnv 5615  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620
This theorem is referenced by:  smffmptf  44598
  Copyright terms: Public domain W3C validator