Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmpt1 Structured version   Visualization version   GIF version

Theorem dmmpt1 45272
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
dmmpt1.x 𝑥𝜑
dmmpt1.1 𝑥𝐵
dmmpt1.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmpt1 (𝜑 → dom (𝑥𝐵𝐶) = 𝐵)

Proof of Theorem dmmpt1
StepHypRef Expression
1 dmmpt1.x . 2 𝑥𝜑
2 dmmpt1.1 . 2 𝑥𝐵
3 eqid 2736 . 2 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
4 dmmpt1.c . 2 ((𝜑𝑥𝐵) → 𝐶𝑉)
51, 2, 3, 4dmmptdff 45227 1 (𝜑 → dom (𝑥𝐵𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2884  cmpt 5206  dom cdm 5659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-xp 5665  df-rel 5666  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672
This theorem is referenced by:  smffmptf  46813
  Copyright terms: Public domain W3C validator