Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmmpt1 Structured version   Visualization version   GIF version

Theorem dmmpt1 43046
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
dmmpt1.x 𝑥𝜑
dmmpt1.1 𝑥𝐵
dmmpt1.c ((𝜑𝑥𝐵) → 𝐶𝑉)
Assertion
Ref Expression
dmmpt1 (𝜑 → dom (𝑥𝐵𝐶) = 𝐵)

Proof of Theorem dmmpt1
StepHypRef Expression
1 dmmpt1.x . 2 𝑥𝜑
2 dmmpt1.1 . 2 𝑥𝐵
3 eqid 2736 . 2 (𝑥𝐵𝐶) = (𝑥𝐵𝐶)
4 dmmpt1.c . 2 ((𝜑𝑥𝐵) → 𝐶𝑉)
51, 2, 3, 4dmmptdff 42992 1 (𝜑 → dom (𝑥𝐵𝐶) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wnf 1783  wcel 2104  wnfc 2884  cmpt 5164  dom cdm 5600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-mpt 5165  df-xp 5606  df-rel 5607  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613
This theorem is referenced by:  smffmptf  44581
  Copyright terms: Public domain W3C validator