Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmmpt1 | Structured version Visualization version GIF version |
Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
dmmpt1.x | ⊢ Ⅎ𝑥𝜑 |
dmmpt1.1 | ⊢ Ⅎ𝑥𝐵 |
dmmpt1.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
Ref | Expression |
---|---|
dmmpt1 | ⊢ (𝜑 → dom (𝑥 ∈ 𝐵 ↦ 𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt1.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | dmmpt1.1 | . 2 ⊢ Ⅎ𝑥𝐵 | |
3 | eqid 2736 | . 2 ⊢ (𝑥 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | |
4 | dmmpt1.c | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | dmmptdff 43009 | 1 ⊢ (𝜑 → dom (𝑥 ∈ 𝐵 ↦ 𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 ↦ cmpt 5169 dom cdm 5607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-mpt 5170 df-xp 5613 df-rel 5614 df-cnv 5615 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 |
This theorem is referenced by: smffmptf 44598 |
Copyright terms: Public domain | W3C validator |