Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > n0rex | Structured version Visualization version GIF version |
Description: There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
n0rex | ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) | |
2 | 1 | ancli 548 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) |
3 | 2 | eximi 1838 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) |
4 | n0 4277 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
5 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ne 2943 df-rex 3069 df-dif 3886 df-nul 4254 |
This theorem is referenced by: ssn0rex 4286 |
Copyright terms: Public domain | W3C validator |