| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssn0rex | Structured version Visualization version GIF version | ||
| Description: There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020.) |
| Ref | Expression |
|---|---|
| ssn0rex | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv 4019 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴)) | |
| 2 | n0rex 4323 | . 2 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴) | |
| 3 | 1, 2 | impel 505 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 ⊆ wss 3917 ∅c0 4299 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ne 2927 df-rex 3055 df-dif 3920 df-ss 3934 df-nul 4300 |
| This theorem is referenced by: uhgrvd00 29469 |
| Copyright terms: Public domain | W3C validator |