MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssn0rex Structured version   Visualization version   GIF version

Theorem ssn0rex 4338
Description: There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020.)
Assertion
Ref Expression
ssn0rex ((𝐴𝐵𝐴 ≠ ∅) → ∃𝑥𝐵 𝑥𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssn0rex
StepHypRef Expression
1 ssrexv 4033 . 2 (𝐴𝐵 → (∃𝑥𝐴 𝑥𝐴 → ∃𝑥𝐵 𝑥𝐴))
2 n0rex 4337 . 2 (𝐴 ≠ ∅ → ∃𝑥𝐴 𝑥𝐴)
31, 2impel 505 1 ((𝐴𝐵𝐴 ≠ ∅) → ∃𝑥𝐵 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2933  wrex 3061  wss 3931  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-ne 2934  df-rex 3062  df-dif 3934  df-ss 3948  df-nul 4314
This theorem is referenced by:  uhgrvd00  29519
  Copyright terms: Public domain W3C validator