![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssn0rex | Structured version Visualization version GIF version |
Description: There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
ssn0rex | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4049 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴)) | |
2 | n0rex 4356 | . 2 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴) | |
3 | 1, 2 | impel 504 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2936 ∃wrex 3066 ⊆ wss 3947 ∅c0 4324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2937 df-rex 3067 df-v 3473 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4325 |
This theorem is referenced by: uhgrvd00 29366 |
Copyright terms: Public domain | W3C validator |