![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssn0rex | Structured version Visualization version GIF version |
Description: There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020.) |
Ref | Expression |
---|---|
ssn0rex | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 4051 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴)) | |
2 | n0rex 4354 | . 2 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐴) | |
3 | 1, 2 | impel 506 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 ∃wrex 3070 ⊆ wss 3948 ∅c0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rex 3071 df-v 3476 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 |
This theorem is referenced by: uhgrvd00 28788 |
Copyright terms: Public domain | W3C validator |