MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspn0OLD Structured version   Visualization version   GIF version

Theorem rspn0OLD 4349
Description: Obsolete version of rspn0 4348 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
rspn0OLD (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥

Proof of Theorem rspn0OLD
StepHypRef Expression
1 n0 4342 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 nfra1 3276 . . . 4 𝑥𝑥𝐴 𝜑
3 nfv 1910 . . . 4 𝑥𝜑
42, 3nfim 1892 . . 3 𝑥(∀𝑥𝐴 𝜑𝜑)
5 rsp 3239 . . . 4 (∀𝑥𝐴 𝜑 → (𝑥𝐴𝜑))
65com12 32 . . 3 (𝑥𝐴 → (∀𝑥𝐴 𝜑𝜑))
74, 6exlimi 2203 . 2 (∃𝑥 𝑥𝐴 → (∀𝑥𝐴 𝜑𝜑))
81, 7sylbi 216 1 (𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1774  wcel 2099  wne 2935  wral 3056  c0 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-ne 2936  df-ral 3057  df-dif 3947  df-nul 4319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator