Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspn0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of rspn0 4286 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rspn0OLD | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4280 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | nfra1 3144 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
3 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | 2, 3 | nfim 1899 | . . 3 ⊢ Ⅎ𝑥(∀𝑥 ∈ 𝐴 𝜑 → 𝜑) |
5 | rsp 3131 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
6 | 5 | com12 32 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
7 | 4, 6 | exlimi 2210 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-ne 2944 df-ral 3069 df-dif 3890 df-nul 4257 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |