![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspn0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of rspn0 4348 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rspn0OLD | ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4342 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | nfra1 3276 | . . . 4 ⊢ Ⅎ𝑥∀𝑥 ∈ 𝐴 𝜑 | |
3 | nfv 1910 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | 2, 3 | nfim 1892 | . . 3 ⊢ Ⅎ𝑥(∀𝑥 ∈ 𝐴 𝜑 → 𝜑) |
5 | rsp 3239 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
6 | 5 | com12 32 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
7 | 4, 6 | exlimi 2203 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝜑 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 ∀wral 3056 ∅c0 4318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-10 2130 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-ne 2936 df-ral 3057 df-dif 3947 df-nul 4319 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |