MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquadlem3 Structured version   Visualization version   GIF version

Theorem lgsquadlem3 27326
Description: Lemma for lgsquad 27327. (Contributed by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlem3 (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁)))
Distinct variable groups:   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝑥,𝑆   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlem3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgseisen.2 . . . . 5 (𝜑𝑄 ∈ (ℙ ∖ {2}))
2 lgseisen.1 . . . . 5 (𝜑𝑃 ∈ (ℙ ∖ {2}))
3 lgseisen.3 . . . . . 6 (𝜑𝑃𝑄)
43necomd 2980 . . . . 5 (𝜑𝑄𝑃)
5 lgsquad.5 . . . . 5 𝑁 = ((𝑄 − 1) / 2)
6 lgsquad.4 . . . . 5 𝑀 = ((𝑃 − 1) / 2)
7 eleq1w 2811 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 ∈ (1...𝑀) ↔ 𝑧 ∈ (1...𝑀)))
8 eleq1w 2811 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑦 ∈ (1...𝑁) ↔ 𝑤 ∈ (1...𝑁)))
97, 8bi2anan9 638 . . . . . . . . 9 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑧 ∈ (1...𝑀) ∧ 𝑤 ∈ (1...𝑁))))
109biancomd 463 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀))))
11 oveq1 7376 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 · 𝑄) = (𝑧 · 𝑄))
12 oveq1 7376 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑦 · 𝑃) = (𝑤 · 𝑃))
1311, 12breqan12d 5118 . . . . . . . 8 ((𝑥 = 𝑧𝑦 = 𝑤) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ↔ (𝑧 · 𝑄) < (𝑤 · 𝑃)))
1410, 13anbi12d 632 . . . . . . 7 ((𝑥 = 𝑧𝑦 = 𝑤) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))))
1514ancoms 458 . . . . . 6 ((𝑦 = 𝑤𝑥 = 𝑧) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))))
1615cbvopabv 5175 . . . . 5 {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {⟨𝑤, 𝑧⟩ ∣ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))}
171, 2, 4, 5, 6, 16lgsquadlem2 27325 . . . 4 (𝜑 → (𝑃 /L 𝑄) = (-1↑(♯‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})))
18 relopabv 5775 . . . . . . . 8 Rel {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}
19 fzfid 13914 . . . . . . . . . 10 (𝜑 → (1...𝑀) ∈ Fin)
20 fzfid 13914 . . . . . . . . . 10 (𝜑 → (1...𝑁) ∈ Fin)
21 xpfi 9245 . . . . . . . . . 10 (((1...𝑀) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((1...𝑀) × (1...𝑁)) ∈ Fin)
2219, 20, 21syl2anc 584 . . . . . . . . 9 (𝜑 → ((1...𝑀) × (1...𝑁)) ∈ Fin)
23 opabssxp 5723 . . . . . . . . 9 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ⊆ ((1...𝑀) × (1...𝑁))
24 ssfi 9114 . . . . . . . . 9 ((((1...𝑀) × (1...𝑁)) ∈ Fin ∧ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ⊆ ((1...𝑀) × (1...𝑁))) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin)
2522, 23, 24sylancl 586 . . . . . . . 8 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin)
26 cnven 8981 . . . . . . . 8 ((Rel {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∧ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})
2718, 25, 26sylancr 587 . . . . . . 7 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})
28 cnvopab 6098 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}
2927, 28breqtrdi 5143 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})
30 hasheni 14289 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} → (♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (♯‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))
3129, 30syl 17 . . . . 5 (𝜑 → (♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (♯‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))
3231oveq2d 7385 . . . 4 (𝜑 → (-1↑(♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) = (-1↑(♯‘{⟨𝑦, 𝑥⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})))
3317, 32eqtr4d 2767 . . 3 (𝜑 → (𝑃 /L 𝑄) = (-1↑(♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})))
34 lgsquad.6 . . . 4 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
352, 1, 3, 6, 5, 34lgsquadlem2 27325 . . 3 (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆)))
3633, 35oveq12d 7387 . 2 (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = ((-1↑(♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(♯‘𝑆))))
37 neg1cn 12147 . . . 4 -1 ∈ ℂ
3837a1i 11 . . 3 (𝜑 → -1 ∈ ℂ)
39 opabssxp 5723 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁))
4034, 39eqsstri 3990 . . . . 5 𝑆 ⊆ ((1...𝑀) × (1...𝑁))
41 ssfi 9114 . . . . 5 ((((1...𝑀) × (1...𝑁)) ∈ Fin ∧ 𝑆 ⊆ ((1...𝑀) × (1...𝑁))) → 𝑆 ∈ Fin)
4222, 40, 41sylancl 586 . . . 4 (𝜑𝑆 ∈ Fin)
43 hashcl 14297 . . . 4 (𝑆 ∈ Fin → (♯‘𝑆) ∈ ℕ0)
4442, 43syl 17 . . 3 (𝜑 → (♯‘𝑆) ∈ ℕ0)
45 hashcl 14297 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin → (♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈ ℕ0)
4625, 45syl 17 . . 3 (𝜑 → (♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈ ℕ0)
4738, 44, 46expaddd 14089 . 2 (𝜑 → (-1↑((♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) = ((-1↑(♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(♯‘𝑆))))
481eldifad 3923 . . . . . . . . . . . . . . . . 17 (𝜑𝑄 ∈ ℙ)
4948adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℙ)
50 prmnn 16620 . . . . . . . . . . . . . . . 16 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
5149, 50syl 17 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℕ)
521, 5gausslemma2dlem0b 27301 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑁 ∈ ℕ)
5352adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℕ)
5453nnzd 12532 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℤ)
55 prmz 16621 . . . . . . . . . . . . . . . . . . . 20 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
5649, 55syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℤ)
57 peano2zm 12552 . . . . . . . . . . . . . . . . . . 19 (𝑄 ∈ ℤ → (𝑄 − 1) ∈ ℤ)
5856, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℤ)
5953nnred 12177 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℝ)
6058zred 12614 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℝ)
61 prmuz2 16642 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑄 ∈ ℙ → 𝑄 ∈ (ℤ‘2))
6249, 61syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ (ℤ‘2))
63 uz2m1nn 12858 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑄 ∈ (ℤ‘2) → (𝑄 − 1) ∈ ℕ)
6462, 63syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℕ)
6564nnrpd 12969 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℝ+)
66 rphalflt 12958 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄 − 1) ∈ ℝ+ → ((𝑄 − 1) / 2) < (𝑄 − 1))
6765, 66syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 − 1) / 2) < (𝑄 − 1))
685, 67eqbrtrid 5137 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 < (𝑄 − 1))
6959, 60, 68ltled 11298 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ≤ (𝑄 − 1))
70 eluz2 12775 . . . . . . . . . . . . . . . . . 18 ((𝑄 − 1) ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑄 − 1) ∈ ℤ ∧ 𝑁 ≤ (𝑄 − 1)))
7154, 58, 69, 70syl3anbrc 1344 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ (ℤ𝑁))
72 fzss2 13501 . . . . . . . . . . . . . . . . 17 ((𝑄 − 1) ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...(𝑄 − 1)))
7371, 72syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (1...𝑁) ⊆ (1...(𝑄 − 1)))
74 simprr 772 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...𝑁))
7573, 74sseldd 3944 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...(𝑄 − 1)))
76 fzm1ndvds 16268 . . . . . . . . . . . . . . 15 ((𝑄 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑄 − 1))) → ¬ 𝑄𝑦)
7751, 75, 76syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄𝑦)
784adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄𝑃)
792eldifad 3923 . . . . . . . . . . . . . . . . . 18 (𝜑𝑃 ∈ ℙ)
8079adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℙ)
81 prmrp 16658 . . . . . . . . . . . . . . . . 17 ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄𝑃))
8249, 80, 81syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄𝑃))
8378, 82mpbird 257 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 gcd 𝑃) = 1)
84 prmz 16621 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
8580, 84syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℤ)
86 elfzelz 13461 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℤ)
8786ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℤ)
88 coprmdvds 16599 . . . . . . . . . . . . . . . 16 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑦))
8956, 85, 87, 88syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑦))
9083, 89mpan2d 694 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) → 𝑄𝑦))
9177, 90mtod 198 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑃 · 𝑦))
92 prmnn 16620 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
9380, 92syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℕ)
9493nncnd 12178 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℂ)
95 elfznn 13490 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ)
9695ad2antll 729 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℕ)
9796nncnd 12178 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℂ)
9894, 97mulcomd 11171 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑃 · 𝑦) = (𝑦 · 𝑃))
9998breq2d 5114 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) ↔ 𝑄 ∥ (𝑦 · 𝑃)))
10091, 99mtbid 324 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑦 · 𝑃))
101 elfzelz 13461 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ)
102101ad2antrl 728 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℤ)
103 dvdsmul2 16224 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑥 · 𝑄))
104102, 56, 103syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∥ (𝑥 · 𝑄))
105 breq2 5106 . . . . . . . . . . . . . 14 ((𝑥 · 𝑄) = (𝑦 · 𝑃) → (𝑄 ∥ (𝑥 · 𝑄) ↔ 𝑄 ∥ (𝑦 · 𝑃)))
106104, 105syl5ibcom 245 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) = (𝑦 · 𝑃) → 𝑄 ∥ (𝑦 · 𝑃)))
107106necon3bd 2939 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (¬ 𝑄 ∥ (𝑦 · 𝑃) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃)))
108100, 107mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃))
109 elfznn 13490 . . . . . . . . . . . . . . 15 (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ)
110109ad2antrl 728 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℕ)
111110, 51nnmulcld 12215 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℕ)
112111nnred 12177 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℝ)
11396, 93nnmulcld 12215 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℕ)
114113nnred 12177 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℝ)
115112, 114lttri2d 11289 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) ≠ (𝑦 · 𝑃) ↔ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
116108, 115mpbid 232 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
117116ex 412 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
118117pm4.71rd 562 . . . . . . . 8 (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)))))
119 ancom 460 . . . . . . . 8 ((((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
120118, 119bitr2di 288 . . . . . . 7 (𝜑 → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))
121120opabbidv 5168 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))})
122 unopab 5182 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
12334uneq2i 4124 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
124 andi 1009 . . . . . . . 8 (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
125124opabbii 5169 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
126122, 123, 1253eqtr4i 2762 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
127 df-xp 5637 . . . . . 6 ((1...𝑀) × (1...𝑁)) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))}
128121, 126, 1273eqtr4g 2789 . . . . 5 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ((1...𝑀) × (1...𝑁)))
129128fveq2d 6844 . . . 4 (𝜑 → (♯‘({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = (♯‘((1...𝑀) × (1...𝑁))))
130 inopab 5783 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
13134ineq2i 4176 . . . . . . 7 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
132 anandi 676 . . . . . . . 8 (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
133132opabbii 5169 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {⟨𝑥, 𝑦⟩ ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
134130, 131, 1333eqtr4i 2762 . . . . . 6 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))}
135 ltnsym2 11249 . . . . . . . . . . . 12 (((𝑥 · 𝑄) ∈ ℝ ∧ (𝑦 · 𝑃) ∈ ℝ) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
136112, 114, 135syl2anc 584 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
137136ex 412 . . . . . . . . . 10 (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
138 imnan 399 . . . . . . . . . 10 (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
139137, 138sylib 218 . . . . . . . . 9 (𝜑 → ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
140139nexdv 1936 . . . . . . . 8 (𝜑 → ¬ ∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
141140nexdv 1936 . . . . . . 7 (𝜑 → ¬ ∃𝑥𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
142 opabn0 5508 . . . . . . . 8 ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} ≠ ∅ ↔ ∃𝑥𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))))
143142necon1bbii 2974 . . . . . . 7 (¬ ∃𝑥𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅)
144141, 143sylib 218 . . . . . 6 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅)
145134, 144eqtrid 2776 . . . . 5 (𝜑 → ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅)
146 hashun 14323 . . . . 5 (({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin ∧ 𝑆 ∈ Fin ∧ ({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅) → (♯‘({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆)))
14725, 42, 145, 146syl3anc 1373 . . . 4 (𝜑 → (♯‘({⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆)))
148 hashxp 14375 . . . . . 6 (((1...𝑀) ∈ Fin ∧ (1...𝑁) ∈ Fin) → (♯‘((1...𝑀) × (1...𝑁))) = ((♯‘(1...𝑀)) · (♯‘(1...𝑁))))
14919, 20, 148syl2anc 584 . . . . 5 (𝜑 → (♯‘((1...𝑀) × (1...𝑁))) = ((♯‘(1...𝑀)) · (♯‘(1...𝑁))))
1502, 6gausslemma2dlem0b 27301 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
151150nnnn0d 12479 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
152 hashfz1 14287 . . . . . . 7 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
153151, 152syl 17 . . . . . 6 (𝜑 → (♯‘(1...𝑀)) = 𝑀)
15452nnnn0d 12479 . . . . . . 7 (𝜑𝑁 ∈ ℕ0)
155 hashfz1 14287 . . . . . . 7 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
156154, 155syl 17 . . . . . 6 (𝜑 → (♯‘(1...𝑁)) = 𝑁)
157153, 156oveq12d 7387 . . . . 5 (𝜑 → ((♯‘(1...𝑀)) · (♯‘(1...𝑁))) = (𝑀 · 𝑁))
158149, 157eqtrd 2764 . . . 4 (𝜑 → (♯‘((1...𝑀) × (1...𝑁))) = (𝑀 · 𝑁))
159129, 147, 1583eqtr3d 2772 . . 3 (𝜑 → ((♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆)) = (𝑀 · 𝑁))
160159oveq2d 7385 . 2 (𝜑 → (-1↑((♯‘{⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) = (-1↑(𝑀 · 𝑁)))
16136, 47, 1603eqtr2d 2770 1 (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wex 1779  wcel 2109  wne 2925  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  {copab 5164   × cxp 5629  ccnv 5630  Rel wrel 5636  cfv 6499  (class class class)co 7369  cen 8892  Fincfn 8895  cc 11042  cr 11043  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  cexp 14002  chash 14271  cdvds 16198   gcd cgcd 16440  cprime 16617   /L clgs 27238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-gcd 16441  df-prm 16618  df-phi 16712  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-gsum 17381  df-imas 17447  df-qus 17448  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-nsg 19038  df-eqg 19039  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-rlreg 20614  df-domn 20615  df-idom 20616  df-drng 20651  df-field 20652  df-lmod 20800  df-lss 20870  df-lsp 20910  df-sra 21112  df-rgmod 21113  df-lidl 21150  df-rsp 21151  df-2idl 21192  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-zn 21448  df-lgs 27239
This theorem is referenced by:  lgsquad  27327
  Copyright terms: Public domain W3C validator