| Step | Hyp | Ref
| Expression |
| 1 | | lgseisen.2 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℙ ∖
{2})) |
| 2 | | lgseisen.1 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 3 | | lgseisen.3 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| 4 | 3 | necomd 2995 |
. . . . 5
⊢ (𝜑 → 𝑄 ≠ 𝑃) |
| 5 | | lgsquad.5 |
. . . . 5
⊢ 𝑁 = ((𝑄 − 1) / 2) |
| 6 | | lgsquad.4 |
. . . . 5
⊢ 𝑀 = ((𝑃 − 1) / 2) |
| 7 | | eleq1w 2823 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → (𝑥 ∈ (1...𝑀) ↔ 𝑧 ∈ (1...𝑀))) |
| 8 | | eleq1w 2823 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (𝑦 ∈ (1...𝑁) ↔ 𝑤 ∈ (1...𝑁))) |
| 9 | 7, 8 | bi2anan9 638 |
. . . . . . . . 9
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑧 ∈ (1...𝑀) ∧ 𝑤 ∈ (1...𝑁)))) |
| 10 | 9 | biancomd 463 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)))) |
| 11 | | oveq1 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 · 𝑄) = (𝑧 · 𝑄)) |
| 12 | | oveq1 7439 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑦 · 𝑃) = (𝑤 · 𝑃)) |
| 13 | 11, 12 | breqan12d 5158 |
. . . . . . . 8
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ↔ (𝑧 · 𝑄) < (𝑤 · 𝑃))) |
| 14 | 10, 13 | anbi12d 632 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃)))) |
| 15 | 14 | ancoms 458 |
. . . . . 6
⊢ ((𝑦 = 𝑤 ∧ 𝑥 = 𝑧) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ↔ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃)))) |
| 16 | 15 | cbvopabv 5215 |
. . . . 5
⊢
{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {〈𝑤, 𝑧〉 ∣ ((𝑤 ∈ (1...𝑁) ∧ 𝑧 ∈ (1...𝑀)) ∧ (𝑧 · 𝑄) < (𝑤 · 𝑃))} |
| 17 | 1, 2, 4, 5, 6, 16 | lgsquadlem2 27426 |
. . . 4
⊢ (𝜑 → (𝑃 /L 𝑄) = (-1↑(♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))) |
| 18 | | relopabv 5830 |
. . . . . . . 8
⊢ Rel
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} |
| 19 | | fzfid 14015 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑀) ∈ Fin) |
| 20 | | fzfid 14015 |
. . . . . . . . . 10
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 21 | | xpfi 9359 |
. . . . . . . . . 10
⊢
(((1...𝑀) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ ((1...𝑀) ×
(1...𝑁)) ∈
Fin) |
| 22 | 19, 20, 21 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑀) × (1...𝑁)) ∈ Fin) |
| 23 | | opabssxp 5777 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ⊆ ((1...𝑀) × (1...𝑁)) |
| 24 | | ssfi 9214 |
. . . . . . . . 9
⊢
((((1...𝑀) ×
(1...𝑁)) ∈ Fin ∧
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ⊆ ((1...𝑀) × (1...𝑁))) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) |
| 25 | 22, 23, 24 | sylancl 586 |
. . . . . . . 8
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) |
| 26 | | cnven 9074 |
. . . . . . . 8
⊢ ((Rel
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∧ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin) → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) |
| 27 | 18, 25, 26 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) |
| 28 | | cnvopab 6156 |
. . . . . . 7
⊢ ◡{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} = {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} |
| 29 | 27, 28 | breqtrdi 5183 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) |
| 30 | | hasheni 14388 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ≈ {〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} → (♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) |
| 31 | 29, 30 | syl 17 |
. . . . 5
⊢ (𝜑 →
(♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) = (♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) |
| 32 | 31 | oveq2d 7448 |
. . . 4
⊢ (𝜑 →
(-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) = (-1↑(♯‘{〈𝑦, 𝑥〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))) |
| 33 | 17, 32 | eqtr4d 2779 |
. . 3
⊢ (𝜑 → (𝑃 /L 𝑄) = (-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}))) |
| 34 | | lgsquad.6 |
. . . 4
⊢ 𝑆 = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} |
| 35 | 2, 1, 3, 6, 5, 34 | lgsquadlem2 27426 |
. . 3
⊢ (𝜑 → (𝑄 /L 𝑃) = (-1↑(♯‘𝑆))) |
| 36 | 33, 35 | oveq12d 7450 |
. 2
⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = ((-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(♯‘𝑆)))) |
| 37 | | neg1cn 12381 |
. . . 4
⊢ -1 ∈
ℂ |
| 38 | 37 | a1i 11 |
. . 3
⊢ (𝜑 → -1 ∈
ℂ) |
| 39 | | opabssxp 5777 |
. . . . . 6
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁)) |
| 40 | 34, 39 | eqsstri 4029 |
. . . . 5
⊢ 𝑆 ⊆ ((1...𝑀) × (1...𝑁)) |
| 41 | | ssfi 9214 |
. . . . 5
⊢
((((1...𝑀) ×
(1...𝑁)) ∈ Fin ∧
𝑆 ⊆ ((1...𝑀) × (1...𝑁))) → 𝑆 ∈ Fin) |
| 42 | 22, 40, 41 | sylancl 586 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Fin) |
| 43 | | hashcl 14396 |
. . . 4
⊢ (𝑆 ∈ Fin →
(♯‘𝑆) ∈
ℕ0) |
| 44 | 42, 43 | syl 17 |
. . 3
⊢ (𝜑 → (♯‘𝑆) ∈
ℕ0) |
| 45 | | hashcl 14396 |
. . . 4
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin →
(♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈
ℕ0) |
| 46 | 25, 45 | syl 17 |
. . 3
⊢ (𝜑 →
(♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) ∈
ℕ0) |
| 47 | 38, 44, 46 | expaddd 14189 |
. 2
⊢ (𝜑 →
(-1↑((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) = ((-1↑(♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))})) · (-1↑(♯‘𝑆)))) |
| 48 | 1 | eldifad 3962 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑄 ∈ ℙ) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℙ) |
| 50 | | prmnn 16712 |
. . . . . . . . . . . . . . . 16
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℕ) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℕ) |
| 52 | 1, 5 | gausslemma2dlem0b 27402 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℕ) |
| 54 | 53 | nnzd 12642 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℤ) |
| 55 | | prmz 16713 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
ℤ) |
| 56 | 49, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈ ℤ) |
| 57 | | peano2zm 12662 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑄 ∈ ℤ → (𝑄 − 1) ∈
ℤ) |
| 58 | 56, 57 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℤ) |
| 59 | 53 | nnred 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ∈ ℝ) |
| 60 | 58 | zred 12724 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℝ) |
| 61 | | prmuz2 16734 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑄 ∈ ℙ → 𝑄 ∈
(ℤ≥‘2)) |
| 62 | 49, 61 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∈
(ℤ≥‘2)) |
| 63 | | uz2m1nn 12966 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑄 ∈
(ℤ≥‘2) → (𝑄 − 1) ∈ ℕ) |
| 64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈ ℕ) |
| 65 | 64 | nnrpd 13076 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈
ℝ+) |
| 66 | | rphalflt 13065 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑄 − 1) ∈
ℝ+ → ((𝑄 − 1) / 2) < (𝑄 − 1)) |
| 67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 − 1) / 2) < (𝑄 − 1)) |
| 68 | 5, 67 | eqbrtrid 5177 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 < (𝑄 − 1)) |
| 69 | 59, 60, 68 | ltled 11410 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑁 ≤ (𝑄 − 1)) |
| 70 | | eluz2 12885 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑄 − 1) ∈
(ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ (𝑄 − 1) ∈ ℤ ∧ 𝑁 ≤ (𝑄 − 1))) |
| 71 | 54, 58, 69, 70 | syl3anbrc 1343 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 − 1) ∈
(ℤ≥‘𝑁)) |
| 72 | | fzss2 13605 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄 − 1) ∈
(ℤ≥‘𝑁) → (1...𝑁) ⊆ (1...(𝑄 − 1))) |
| 73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (1...𝑁) ⊆ (1...(𝑄 − 1))) |
| 74 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...𝑁)) |
| 75 | 73, 74 | sseldd 3983 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ (1...(𝑄 − 1))) |
| 76 | | fzm1ndvds 16360 |
. . . . . . . . . . . . . . 15
⊢ ((𝑄 ∈ ℕ ∧ 𝑦 ∈ (1...(𝑄 − 1))) → ¬ 𝑄 ∥ 𝑦) |
| 77 | 51, 75, 76 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ 𝑦) |
| 78 | 4 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ≠ 𝑃) |
| 79 | 2 | eldifad 3962 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℙ) |
| 81 | | prmrp 16750 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑄 ∈ ℙ ∧ 𝑃 ∈ ℙ) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄 ≠ 𝑃)) |
| 82 | 49, 80, 81 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 gcd 𝑃) = 1 ↔ 𝑄 ≠ 𝑃)) |
| 83 | 78, 82 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 gcd 𝑃) = 1) |
| 84 | | prmz 16713 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 85 | 80, 84 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℤ) |
| 86 | | elfzelz 13565 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℤ) |
| 87 | 86 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℤ) |
| 88 | | coprmdvds 16691 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄 ∥ 𝑦)) |
| 89 | 56, 85, 87, 88 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑄 ∥ (𝑃 · 𝑦) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄 ∥ 𝑦)) |
| 90 | 83, 89 | mpan2d 694 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) → 𝑄 ∥ 𝑦)) |
| 91 | 77, 90 | mtod 198 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑃 · 𝑦)) |
| 92 | | prmnn 16712 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 93 | 80, 92 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℕ) |
| 94 | 93 | nncnd 12283 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑃 ∈ ℂ) |
| 95 | | elfznn 13594 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ (1...𝑁) → 𝑦 ∈ ℕ) |
| 96 | 95 | ad2antll 729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℕ) |
| 97 | 96 | nncnd 12283 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑦 ∈ ℂ) |
| 98 | 94, 97 | mulcomd 11283 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑃 · 𝑦) = (𝑦 · 𝑃)) |
| 99 | 98 | breq2d 5154 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑄 ∥ (𝑃 · 𝑦) ↔ 𝑄 ∥ (𝑦 · 𝑃))) |
| 100 | 91, 99 | mtbid 324 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ 𝑄 ∥ (𝑦 · 𝑃)) |
| 101 | | elfzelz 13565 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℤ) |
| 102 | 101 | ad2antrl 728 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℤ) |
| 103 | | dvdsmul2 16317 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑥 · 𝑄)) |
| 104 | 102, 56, 103 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑄 ∥ (𝑥 · 𝑄)) |
| 105 | | breq2 5146 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 · 𝑄) = (𝑦 · 𝑃) → (𝑄 ∥ (𝑥 · 𝑄) ↔ 𝑄 ∥ (𝑦 · 𝑃))) |
| 106 | 104, 105 | syl5ibcom 245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) = (𝑦 · 𝑃) → 𝑄 ∥ (𝑦 · 𝑃))) |
| 107 | 106 | necon3bd 2953 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (¬ 𝑄 ∥ (𝑦 · 𝑃) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃))) |
| 108 | 100, 107 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ≠ (𝑦 · 𝑃)) |
| 109 | | elfznn 13594 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ (1...𝑀) → 𝑥 ∈ ℕ) |
| 110 | 109 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → 𝑥 ∈ ℕ) |
| 111 | 110, 51 | nnmulcld 12320 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℕ) |
| 112 | 111 | nnred 12282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑥 · 𝑄) ∈ ℝ) |
| 113 | 96, 93 | nnmulcld 12320 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℕ) |
| 114 | 113 | nnred 12282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → (𝑦 · 𝑃) ∈ ℝ) |
| 115 | 112, 114 | lttri2d 11401 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) ≠ (𝑦 · 𝑃) ↔ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 116 | 108, 115 | mpbid 232 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
| 117 | 116 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 118 | 117 | pm4.71rd 562 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))) |
| 119 | | ancom 460 |
. . . . . . . 8
⊢ ((((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 120 | 118, 119 | bitr2di 288 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)))) |
| 121 | 120 | opabbidv 5208 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))}) |
| 122 | | unopab 5223 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
| 123 | 34 | uneq2i 4164 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) |
| 124 | | andi 1009 |
. . . . . . . 8
⊢ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 125 | 124 | opabbii 5209 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∨ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
| 126 | 122, 123,
125 | 3eqtr4i 2774 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∨ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
| 127 | | df-xp 5690 |
. . . . . 6
⊢
((1...𝑀) ×
(1...𝑁)) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))} |
| 128 | 121, 126,
127 | 3eqtr4g 2801 |
. . . . 5
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆) = ((1...𝑀) × (1...𝑁))) |
| 129 | 128 | fveq2d 6909 |
. . . 4
⊢ (𝜑 →
(♯‘({〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = (♯‘((1...𝑀) × (1...𝑁)))) |
| 130 | | inopab 5838 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
| 131 | 34 | ineq2i 4216 |
. . . . . . 7
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}) |
| 132 | | anandi 676 |
. . . . . . . 8
⊢ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 133 | 132 | opabbii 5209 |
. . . . . . 7
⊢
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = {〈𝑥, 𝑦〉 ∣ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃)) ∧ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
| 134 | 130, 131,
133 | 3eqtr4i 2774 |
. . . . . 6
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} |
| 135 | | ltnsym2 11361 |
. . . . . . . . . . . 12
⊢ (((𝑥 · 𝑄) ∈ ℝ ∧ (𝑦 · 𝑃) ∈ ℝ) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
| 136 | 112, 114,
135 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) |
| 137 | 136 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 138 | | imnan 399 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) → ¬ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 139 | 137, 138 | sylib 218 |
. . . . . . . . 9
⊢ (𝜑 → ¬ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 140 | 139 | nexdv 1935 |
. . . . . . . 8
⊢ (𝜑 → ¬ ∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 141 | 140 | nexdv 1935 |
. . . . . . 7
⊢ (𝜑 → ¬ ∃𝑥∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 142 | | opabn0 5557 |
. . . . . . . 8
⊢
({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} ≠ ∅ ↔ ∃𝑥∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))) |
| 143 | 142 | necon1bbii 2989 |
. . . . . . 7
⊢ (¬
∃𝑥∃𝑦((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))) ↔ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅) |
| 144 | 141, 143 | sylib 218 |
. . . . . 6
⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ ((𝑥 · 𝑄) < (𝑦 · 𝑃) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))} = ∅) |
| 145 | 134, 144 | eqtrid 2788 |
. . . . 5
⊢ (𝜑 → ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅) |
| 146 | | hashun 14422 |
. . . . 5
⊢
(({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∈ Fin ∧ 𝑆 ∈ Fin ∧ ({〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∩ 𝑆) = ∅) →
(♯‘({〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) |
| 147 | 25, 42, 145, 146 | syl3anc 1372 |
. . . 4
⊢ (𝜑 →
(♯‘({〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))} ∪ 𝑆)) = ((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) |
| 148 | | hashxp 14474 |
. . . . . 6
⊢
(((1...𝑀) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ (♯‘((1...𝑀) × (1...𝑁))) = ((♯‘(1...𝑀)) · (♯‘(1...𝑁)))) |
| 149 | 19, 20, 148 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (♯‘((1...𝑀) × (1...𝑁))) = ((♯‘(1...𝑀)) · (♯‘(1...𝑁)))) |
| 150 | 2, 6 | gausslemma2dlem0b 27402 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 151 | 150 | nnnn0d 12589 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 152 | | hashfz1 14386 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
→ (♯‘(1...𝑀)) = 𝑀) |
| 153 | 151, 152 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘(1...𝑀)) = 𝑀) |
| 154 | 52 | nnnn0d 12589 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 155 | | hashfz1 14386 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
| 156 | 154, 155 | syl 17 |
. . . . . 6
⊢ (𝜑 → (♯‘(1...𝑁)) = 𝑁) |
| 157 | 153, 156 | oveq12d 7450 |
. . . . 5
⊢ (𝜑 → ((♯‘(1...𝑀)) ·
(♯‘(1...𝑁))) =
(𝑀 · 𝑁)) |
| 158 | 149, 157 | eqtrd 2776 |
. . . 4
⊢ (𝜑 → (♯‘((1...𝑀) × (1...𝑁))) = (𝑀 · 𝑁)) |
| 159 | 129, 147,
158 | 3eqtr3d 2784 |
. . 3
⊢ (𝜑 →
((♯‘{〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆)) = (𝑀 · 𝑁)) |
| 160 | 159 | oveq2d 7448 |
. 2
⊢ (𝜑 →
(-1↑((♯‘{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑥 · 𝑄) < (𝑦 · 𝑃))}) + (♯‘𝑆))) = (-1↑(𝑀 · 𝑁))) |
| 161 | 36, 47, 160 | 3eqtr2d 2782 |
1
⊢ (𝜑 → ((𝑃 /L 𝑄) · (𝑄 /L 𝑃)) = (-1↑(𝑀 · 𝑁))) |