MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  class2set Structured version   Visualization version   GIF version

Theorem class2set 5271
Description: Construct, from any class 𝐴, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.)
Assertion
Ref Expression
class2set {𝑥𝐴𝐴 ∈ V} ∈ V
Distinct variable group:   𝑥,𝐴

Proof of Theorem class2set
StepHypRef Expression
1 rabexg 5250 . 2 (𝐴 ∈ V → {𝑥𝐴𝐴 ∈ V} ∈ V)
2 simpl 482 . . . . 5 ((¬ 𝐴 ∈ V ∧ 𝑥𝐴) → ¬ 𝐴 ∈ V)
32nrexdv 3197 . . . 4 𝐴 ∈ V → ¬ ∃𝑥𝐴 𝐴 ∈ V)
4 rabn0 4316 . . . . 5 ({𝑥𝐴𝐴 ∈ V} ≠ ∅ ↔ ∃𝑥𝐴 𝐴 ∈ V)
54necon1bbii 2992 . . . 4 (¬ ∃𝑥𝐴 𝐴 ∈ V ↔ {𝑥𝐴𝐴 ∈ V} = ∅)
63, 5sylib 217 . . 3 𝐴 ∈ V → {𝑥𝐴𝐴 ∈ V} = ∅)
7 0ex 5226 . . 3 ∅ ∈ V
86, 7eqeltrdi 2847 . 2 𝐴 ∈ V → {𝑥𝐴𝐴 ∈ V} ∈ V)
91, 8pm2.61i 182 1 {𝑥𝐴𝐴 ∈ V} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator