![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > class2set | Structured version Visualization version GIF version |
Description: The class of elements of 𝐴 "such that 𝐴 is a set" is a set. That class is equal to 𝐴 when 𝐴 is a set (see class2seteq 3701) and to the empty set when 𝐴 is a proper class. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
class2set | ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 5332 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) | |
2 | simpl 484 | . . . . 5 ⊢ ((¬ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐴) → ¬ 𝐴 ∈ V) | |
3 | 2 | nrexdv 3150 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) |
4 | rabn0 4386 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) | |
5 | 4 | necon1bbii 2991 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
6 | 3, 5 | sylib 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
7 | 0ex 5308 | . . 3 ⊢ ∅ ∈ V | |
8 | 6, 7 | eqeltrdi 2842 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 {crab 3433 Vcvv 3475 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |