Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > class2set | Structured version Visualization version GIF version |
Description: Construct, from any class 𝐴, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
class2set | ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabexg 5250 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) | |
2 | simpl 482 | . . . . 5 ⊢ ((¬ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐴) → ¬ 𝐴 ∈ V) | |
3 | 2 | nrexdv 3197 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) |
4 | rabn0 4316 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) | |
5 | 4 | necon1bbii 2992 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
6 | 3, 5 | sylib 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
7 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
8 | 6, 7 | eqeltrdi 2847 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) |
9 | 1, 8 | pm2.61i 182 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 Vcvv 3422 ∅c0 4253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |