| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > class2set | Structured version Visualization version GIF version | ||
| Description: The class of elements of 𝐴 "such that 𝐴 is a set" is a set. That class is equal to 𝐴 when 𝐴 is a set (see class2seteq 3692) and to the empty set when 𝐴 is a proper class. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| class2set | ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabexg 5317 | . 2 ⊢ (𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) | |
| 2 | simpl 482 | . . . . 5 ⊢ ((¬ 𝐴 ∈ V ∧ 𝑥 ∈ 𝐴) → ¬ 𝐴 ∈ V) | |
| 3 | 2 | nrexdv 3136 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) |
| 4 | rabn0 4369 | . . . . 5 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐴 ∈ V) | |
| 5 | 4 | necon1bbii 2980 | . . . 4 ⊢ (¬ ∃𝑥 ∈ 𝐴 𝐴 ∈ V ↔ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
| 6 | 3, 5 | sylib 218 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} = ∅) |
| 7 | 0ex 5287 | . . 3 ⊢ ∅ ∈ V | |
| 8 | 6, 7 | eqeltrdi 2841 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V) |
| 9 | 1, 8 | pm2.61i 182 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝐴 ∈ V} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3419 Vcvv 3463 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |