MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom Structured version   Visualization version   GIF version

Theorem modom 9191
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
modom (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)

Proof of Theorem modom
StepHypRef Expression
1 moeu 2576 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 imor 853 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
3 abn0 4348 . . . . . 6 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
43necon1bbii 2974 . . . . 5 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} = ∅)
5 sdom1 9189 . . . . 5 ({𝑥𝜑} ≺ 1o ↔ {𝑥𝜑} = ∅)
64, 5bitr4i 278 . . . 4 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} ≺ 1o)
7 euen1 8998 . . . 4 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
86, 7orbi12i 914 . . 3 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
9 brdom2 8953 . . 3 ({𝑥𝜑} ≼ 1o ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
108, 9bitr4i 278 . 2 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥𝜑} ≼ 1o)
111, 2, 103bitri 297 1 (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wex 1779  ∃*wmo 2531  ∃!weu 2561  {cab 2707  c0 4296   class class class wbr 5107  1oc1o 8427  cen 8915  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1o 8434  df-en 8919  df-dom 8920  df-sdom 8921
This theorem is referenced by:  modom2  9192
  Copyright terms: Public domain W3C validator