![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modom | Structured version Visualization version GIF version |
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
modom | ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu 2581 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | imor 853 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) | |
3 | abn0 4391 | . . . . . 6 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
4 | 3 | necon1bbii 2988 | . . . . 5 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} = ∅) |
5 | sdom1 9276 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ≺ 1o ↔ {𝑥 ∣ 𝜑} = ∅) | |
6 | 4, 5 | bitr4i 278 | . . . 4 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≺ 1o) |
7 | euen1 9066 | . . . 4 ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) | |
8 | 6, 7 | orbi12i 914 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥 ∣ 𝜑} ≺ 1o ∨ {𝑥 ∣ 𝜑} ≈ 1o)) |
9 | brdom2 9021 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ≼ 1o ↔ ({𝑥 ∣ 𝜑} ≺ 1o ∨ {𝑥 ∣ 𝜑} ≈ 1o)) | |
10 | 8, 9 | bitr4i 278 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
11 | 1, 2, 10 | 3bitri 297 | 1 ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1537 ∃wex 1776 ∃*wmo 2536 ∃!weu 2566 {cab 2712 ∅c0 4339 class class class wbr 5148 1oc1o 8498 ≈ cen 8981 ≼ cdom 8982 ≺ csdm 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1o 8505 df-en 8985 df-dom 8986 df-sdom 8987 |
This theorem is referenced by: modom2 9279 |
Copyright terms: Public domain | W3C validator |