MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom Structured version   Visualization version   GIF version

Theorem modom 9142
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
modom (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)

Proof of Theorem modom
StepHypRef Expression
1 moeu 2580 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 imor 853 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
3 abn0 4334 . . . . . 6 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
43necon1bbii 2978 . . . . 5 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} = ∅)
5 sdom1 9141 . . . . 5 ({𝑥𝜑} ≺ 1o ↔ {𝑥𝜑} = ∅)
64, 5bitr4i 278 . . . 4 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} ≺ 1o)
7 euen1 8956 . . . 4 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
86, 7orbi12i 914 . . 3 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
9 brdom2 8911 . . 3 ({𝑥𝜑} ≼ 1o ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
108, 9bitr4i 278 . 2 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥𝜑} ≼ 1o)
111, 2, 103bitri 297 1 (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1541  wex 1780  ∃*wmo 2535  ∃!weu 2565  {cab 2711  c0 4282   class class class wbr 5093  1oc1o 8384  cen 8872  cdom 8873  csdm 8874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-1o 8391  df-en 8876  df-dom 8877  df-sdom 8878
This theorem is referenced by:  modom2  9143
  Copyright terms: Public domain W3C validator