MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom Structured version   Visualization version   GIF version

Theorem modom 8953
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
modom (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)

Proof of Theorem modom
StepHypRef Expression
1 moeu 2583 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 imor 849 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
3 abn0 4311 . . . . . 6 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
43necon1bbii 2992 . . . . 5 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} = ∅)
5 sdom1 8952 . . . . 5 ({𝑥𝜑} ≺ 1o ↔ {𝑥𝜑} = ∅)
64, 5bitr4i 277 . . . 4 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} ≺ 1o)
7 euen1 8770 . . . 4 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
86, 7orbi12i 911 . . 3 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
9 brdom2 8725 . . 3 ({𝑥𝜑} ≼ 1o ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
108, 9bitr4i 277 . 2 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥𝜑} ≼ 1o)
111, 2, 103bitri 296 1 (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 843   = wceq 1539  wex 1783  ∃*wmo 2538  ∃!weu 2568  {cab 2715  c0 4253   class class class wbr 5070  1oc1o 8260  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  modom2  8954
  Copyright terms: Public domain W3C validator