Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modom | Structured version Visualization version GIF version |
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
modom | ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu 2578 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | imor 849 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) | |
3 | abn0 4317 | . . . . . 6 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
4 | 3 | necon1bbii 2988 | . . . . 5 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} = ∅) |
5 | sdom1 9050 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ≺ 1o ↔ {𝑥 ∣ 𝜑} = ∅) | |
6 | 4, 5 | bitr4i 277 | . . . 4 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≺ 1o) |
7 | euen1 8840 | . . . 4 ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) | |
8 | 6, 7 | orbi12i 911 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥 ∣ 𝜑} ≺ 1o ∨ {𝑥 ∣ 𝜑} ≈ 1o)) |
9 | brdom2 8792 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ≼ 1o ↔ ({𝑥 ∣ 𝜑} ≺ 1o ∨ {𝑥 ∣ 𝜑} ≈ 1o)) | |
10 | 8, 9 | bitr4i 277 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
11 | 1, 2, 10 | 3bitri 296 | 1 ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1537 ∃wex 1777 ∃*wmo 2533 ∃!weu 2563 {cab 2710 ∅c0 4259 class class class wbr 5077 1oc1o 8310 ≈ cen 8750 ≼ cdom 8751 ≺ csdm 8752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-1o 8317 df-en 8754 df-dom 8755 df-sdom 8756 |
This theorem is referenced by: modom2 9053 |
Copyright terms: Public domain | W3C validator |