Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modom | Structured version Visualization version GIF version |
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
Ref | Expression |
---|---|
modom | ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moeu 2602 | . 2 ⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | |
2 | imor 850 | . 2 ⊢ ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑)) | |
3 | abn0 4280 | . . . . . 6 ⊢ ({𝑥 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥𝜑) | |
4 | 3 | necon1bbii 3000 | . . . . 5 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} = ∅) |
5 | sdom1 8769 | . . . . 5 ⊢ ({𝑥 ∣ 𝜑} ≺ 1o ↔ {𝑥 ∣ 𝜑} = ∅) | |
6 | 4, 5 | bitr4i 281 | . . . 4 ⊢ (¬ ∃𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≺ 1o) |
7 | euen1 8611 | . . . 4 ⊢ (∃!𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≈ 1o) | |
8 | 6, 7 | orbi12i 912 | . . 3 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥 ∣ 𝜑} ≺ 1o ∨ {𝑥 ∣ 𝜑} ≈ 1o)) |
9 | brdom2 8570 | . . 3 ⊢ ({𝑥 ∣ 𝜑} ≼ 1o ↔ ({𝑥 ∣ 𝜑} ≺ 1o ∨ {𝑥 ∣ 𝜑} ≈ 1o)) | |
10 | 8, 9 | bitr4i 281 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
11 | 1, 2, 10 | 3bitri 300 | 1 ⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∨ wo 844 = wceq 1538 ∃wex 1781 ∃*wmo 2555 ∃!weu 2587 {cab 2735 ∅c0 4227 class class class wbr 5036 1oc1o 8111 ≈ cen 8537 ≼ cdom 8538 ≺ csdm 8539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-om 7586 df-1o 8118 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 |
This theorem is referenced by: modom2 8771 |
Copyright terms: Public domain | W3C validator |