MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modom Structured version   Visualization version   GIF version

Theorem modom 9241
Description: Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.)
Assertion
Ref Expression
modom (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)

Proof of Theorem modom
StepHypRef Expression
1 moeu 2569 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
2 imor 850 . 2 ((∃𝑥𝜑 → ∃!𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑))
3 abn0 4373 . . . . . 6 ({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
43necon1bbii 2982 . . . . 5 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} = ∅)
5 sdom1 9239 . . . . 5 ({𝑥𝜑} ≺ 1o ↔ {𝑥𝜑} = ∅)
64, 5bitr4i 278 . . . 4 (¬ ∃𝑥𝜑 ↔ {𝑥𝜑} ≺ 1o)
7 euen1 9023 . . . 4 (∃!𝑥𝜑 ↔ {𝑥𝜑} ≈ 1o)
86, 7orbi12i 911 . . 3 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
9 brdom2 8975 . . 3 ({𝑥𝜑} ≼ 1o ↔ ({𝑥𝜑} ≺ 1o ∨ {𝑥𝜑} ≈ 1o))
108, 9bitr4i 278 . 2 ((¬ ∃𝑥𝜑 ∨ ∃!𝑥𝜑) ↔ {𝑥𝜑} ≼ 1o)
111, 2, 103bitri 297 1 (∃*𝑥𝜑 ↔ {𝑥𝜑} ≼ 1o)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wo 844   = wceq 1533  wex 1773  ∃*wmo 2524  ∃!weu 2554  {cab 2701  c0 4315   class class class wbr 5139  1oc1o 8455  cen 8933  cdom 8934  csdm 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1o 8462  df-en 8937  df-dom 8938  df-sdom 8939
This theorem is referenced by:  modom2  9242
  Copyright terms: Public domain W3C validator