MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relimasn Structured version   Visualization version   GIF version

Theorem relimasn 5992
Description: The image of a singleton. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
relimasn (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅

Proof of Theorem relimasn
StepHypRef Expression
1 snprc 4653 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
2 imaeq2 5965 . . . . . . 7 ({𝐴} = ∅ → (𝑅 “ {𝐴}) = (𝑅 “ ∅))
31, 2sylbi 216 . . . . . 6 𝐴 ∈ V → (𝑅 “ {𝐴}) = (𝑅 “ ∅))
4 ima0 5985 . . . . . 6 (𝑅 “ ∅) = ∅
53, 4eqtrdi 2794 . . . . 5 𝐴 ∈ V → (𝑅 “ {𝐴}) = ∅)
65adantl 482 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = ∅)
7 brrelex1 5640 . . . . . . 7 ((Rel 𝑅𝐴𝑅𝑦) → 𝐴 ∈ V)
87stoic1a 1775 . . . . . 6 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝑦)
98nexdv 1939 . . . . 5 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ ∃𝑦 𝐴𝑅𝑦)
10 abn0 4314 . . . . . 6 ({𝑦𝐴𝑅𝑦} ≠ ∅ ↔ ∃𝑦 𝐴𝑅𝑦)
1110necon1bbii 2993 . . . . 5 (¬ ∃𝑦 𝐴𝑅𝑦 ↔ {𝑦𝐴𝑅𝑦} = ∅)
129, 11sylib 217 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → {𝑦𝐴𝑅𝑦} = ∅)
136, 12eqtr4d 2781 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
1413ex 413 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦}))
15 imasng 5991 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
1614, 15pm2.61d2 181 1 (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  Vcvv 3432  c0 4256  {csn 4561   class class class wbr 5074  cima 5592  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  elrelimasn  5993  predep  6233  fnsnfvOLD  6848  funfv2  6856  mapsnd  8674  nznngen  41934  nzss  41935  hashnzfz  41938
  Copyright terms: Public domain W3C validator