| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relimasn | Structured version Visualization version GIF version | ||
| Description: The image of a singleton. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| relimasn | ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 4667 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | imaeq2 6004 | . . . . . . 7 ⊢ ({𝐴} = ∅ → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) | |
| 3 | 1, 2 | sylbi 217 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) |
| 4 | ima0 6025 | . . . . . 6 ⊢ (𝑅 “ ∅) = ∅ | |
| 5 | 3, 4 | eqtrdi 2782 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = ∅) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = ∅) |
| 7 | brrelex1 5667 | . . . . . . 7 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑥) → 𝐴 ∈ V) | |
| 8 | 7 | stoic1a 1773 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝑥) |
| 9 | 8 | alrimiv 1928 | . . . . 5 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ∀𝑥 ¬ 𝐴𝑅𝑥) |
| 10 | breq2 5093 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝐴𝑅𝑦 ↔ 𝐴𝑅𝑥)) | |
| 11 | 10 | ab0w 4326 | . . . . 5 ⊢ ({𝑦 ∣ 𝐴𝑅𝑦} = ∅ ↔ ∀𝑥 ¬ 𝐴𝑅𝑥) |
| 12 | 9, 11 | sylibr 234 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → {𝑦 ∣ 𝐴𝑅𝑦} = ∅) |
| 13 | 6, 12 | eqtr4d 2769 | . . 3 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
| 14 | 13 | ex 412 | . 2 ⊢ (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦})) |
| 15 | imasng 6032 | . 2 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | |
| 16 | 14, 15 | pm2.61d2 181 | 1 ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 Vcvv 3436 ∅c0 4280 {csn 4573 class class class wbr 5089 “ cima 5617 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: elrelimasn 6034 predep 6277 funfv2 6910 mapsnd 8810 nznngen 44419 nzss 44420 hashnzfz 44423 |
| Copyright terms: Public domain | W3C validator |