MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relimasn Structured version   Visualization version   GIF version

Theorem relimasn 6114
Description: The image of a singleton. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
relimasn (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅

Proof of Theorem relimasn
StepHypRef Expression
1 snprc 4742 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
2 imaeq2 6085 . . . . . . 7 ({𝐴} = ∅ → (𝑅 “ {𝐴}) = (𝑅 “ ∅))
31, 2sylbi 217 . . . . . 6 𝐴 ∈ V → (𝑅 “ {𝐴}) = (𝑅 “ ∅))
4 ima0 6106 . . . . . 6 (𝑅 “ ∅) = ∅
53, 4eqtrdi 2796 . . . . 5 𝐴 ∈ V → (𝑅 “ {𝐴}) = ∅)
65adantl 481 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = ∅)
7 brrelex1 5753 . . . . . . 7 ((Rel 𝑅𝐴𝑅𝑦) → 𝐴 ∈ V)
87stoic1a 1770 . . . . . 6 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝑦)
98nexdv 1935 . . . . 5 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ ∃𝑦 𝐴𝑅𝑦)
10 abn0 4408 . . . . . 6 ({𝑦𝐴𝑅𝑦} ≠ ∅ ↔ ∃𝑦 𝐴𝑅𝑦)
1110necon1bbii 2996 . . . . 5 (¬ ∃𝑦 𝐴𝑅𝑦 ↔ {𝑦𝐴𝑅𝑦} = ∅)
129, 11sylib 218 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → {𝑦𝐴𝑅𝑦} = ∅)
136, 12eqtr4d 2783 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
1413ex 412 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦}))
15 imasng 6113 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
1614, 15pm2.61d2 181 1 (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  Vcvv 3488  c0 4352  {csn 4648   class class class wbr 5166  cima 5703  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713
This theorem is referenced by:  elrelimasn  6115  predep  6362  funfv2  7010  mapsnd  8944  nznngen  44285  nzss  44286  hashnzfz  44289
  Copyright terms: Public domain W3C validator