![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relimasn | Structured version Visualization version GIF version |
Description: The image of a singleton. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
relimasn | ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snprc 4442 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
2 | imaeq2 5679 | . . . . . . 7 ⊢ ({𝐴} = ∅ → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) | |
3 | 1, 2 | sylbi 209 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) |
4 | ima0 5698 | . . . . . 6 ⊢ (𝑅 “ ∅) = ∅ | |
5 | 3, 4 | syl6eq 2849 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = ∅) |
6 | 5 | adantl 474 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = ∅) |
7 | brrelex1 5360 | . . . . . . 7 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑦) → 𝐴 ∈ V) | |
8 | 7 | stoic1a 1868 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝑦) |
9 | 8 | nexdv 2032 | . . . . 5 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ ∃𝑦 𝐴𝑅𝑦) |
10 | abn0 4155 | . . . . . 6 ⊢ ({𝑦 ∣ 𝐴𝑅𝑦} ≠ ∅ ↔ ∃𝑦 𝐴𝑅𝑦) | |
11 | 10 | necon1bbii 3020 | . . . . 5 ⊢ (¬ ∃𝑦 𝐴𝑅𝑦 ↔ {𝑦 ∣ 𝐴𝑅𝑦} = ∅) |
12 | 9, 11 | sylib 210 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → {𝑦 ∣ 𝐴𝑅𝑦} = ∅) |
13 | 6, 12 | eqtr4d 2836 | . . 3 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
14 | 13 | ex 402 | . 2 ⊢ (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦})) |
15 | imasng 5704 | . 2 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | |
16 | 14, 15 | pm2.61d2 174 | 1 ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∃wex 1875 ∈ wcel 2157 {cab 2785 Vcvv 3385 ∅c0 4115 {csn 4368 class class class wbr 4843 “ cima 5315 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 |
This theorem is referenced by: elrelimasn 5706 predep 5924 fnsnfv 6483 funfv2 6491 mapsnd 8137 nznngen 39297 nzss 39298 hashnzfz 39301 |
Copyright terms: Public domain | W3C validator |