MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relimasn Structured version   Visualization version   GIF version

Theorem relimasn 6093
Description: The image of a singleton. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
relimasn (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅

Proof of Theorem relimasn
StepHypRef Expression
1 snprc 4726 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
2 imaeq2 6064 . . . . . . 7 ({𝐴} = ∅ → (𝑅 “ {𝐴}) = (𝑅 “ ∅))
31, 2sylbi 216 . . . . . 6 𝐴 ∈ V → (𝑅 “ {𝐴}) = (𝑅 “ ∅))
4 ima0 6085 . . . . . 6 (𝑅 “ ∅) = ∅
53, 4eqtrdi 2784 . . . . 5 𝐴 ∈ V → (𝑅 “ {𝐴}) = ∅)
65adantl 480 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = ∅)
7 brrelex1 5735 . . . . . . 7 ((Rel 𝑅𝐴𝑅𝑦) → 𝐴 ∈ V)
87stoic1a 1766 . . . . . 6 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝑦)
98nexdv 1931 . . . . 5 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ ∃𝑦 𝐴𝑅𝑦)
10 abn0 4384 . . . . . 6 ({𝑦𝐴𝑅𝑦} ≠ ∅ ↔ ∃𝑦 𝐴𝑅𝑦)
1110necon1bbii 2987 . . . . 5 (¬ ∃𝑦 𝐴𝑅𝑦 ↔ {𝑦𝐴𝑅𝑦} = ∅)
129, 11sylib 217 . . . 4 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → {𝑦𝐴𝑅𝑦} = ∅)
136, 12eqtr4d 2771 . . 3 ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
1413ex 411 . 2 (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦}))
15 imasng 6092 . 2 (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
1614, 15pm2.61d2 181 1 (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wex 1773  wcel 2098  {cab 2705  Vcvv 3473  c0 4326  {csn 4632   class class class wbr 5152  cima 5685  Rel wrel 5687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-opab 5215  df-xp 5688  df-rel 5689  df-cnv 5690  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695
This theorem is referenced by:  elrelimasn  6094  predep  6341  fnsnfvOLD  6983  funfv2  6991  mapsnd  8913  nznngen  43802  nzss  43803  hashnzfz  43806
  Copyright terms: Public domain W3C validator