| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relimasn | Structured version Visualization version GIF version | ||
| Description: The image of a singleton. (Contributed by NM, 20-May-1998.) |
| Ref | Expression |
|---|---|
| relimasn | ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snprc 4684 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 2 | imaeq2 6030 | . . . . . . 7 ⊢ ({𝐴} = ∅ → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) | |
| 3 | 1, 2 | sylbi 217 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = (𝑅 “ ∅)) |
| 4 | ima0 6051 | . . . . . 6 ⊢ (𝑅 “ ∅) = ∅ | |
| 5 | 3, 4 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = ∅) |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = ∅) |
| 7 | brrelex1 5694 | . . . . . . 7 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝑦) → 𝐴 ∈ V) | |
| 8 | 7 | stoic1a 1772 | . . . . . 6 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ 𝐴𝑅𝑦) |
| 9 | 8 | nexdv 1936 | . . . . 5 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → ¬ ∃𝑦 𝐴𝑅𝑦) |
| 10 | abn0 4351 | . . . . . 6 ⊢ ({𝑦 ∣ 𝐴𝑅𝑦} ≠ ∅ ↔ ∃𝑦 𝐴𝑅𝑦) | |
| 11 | 10 | necon1bbii 2975 | . . . . 5 ⊢ (¬ ∃𝑦 𝐴𝑅𝑦 ↔ {𝑦 ∣ 𝐴𝑅𝑦} = ∅) |
| 12 | 9, 11 | sylib 218 | . . . 4 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → {𝑦 ∣ 𝐴𝑅𝑦} = ∅) |
| 13 | 6, 12 | eqtr4d 2768 | . . 3 ⊢ ((Rel 𝑅 ∧ ¬ 𝐴 ∈ V) → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
| 14 | 13 | ex 412 | . 2 ⊢ (Rel 𝑅 → (¬ 𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦})) |
| 15 | imasng 6058 | . 2 ⊢ (𝐴 ∈ V → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) | |
| 16 | 14, 15 | pm2.61d2 181 | 1 ⊢ (Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦 ∣ 𝐴𝑅𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 Vcvv 3450 ∅c0 4299 {csn 4592 class class class wbr 5110 “ cima 5644 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: elrelimasn 6060 predep 6306 funfv2 6952 mapsnd 8862 nznngen 44312 nzss 44313 hashnzfz 44316 |
| Copyright terms: Public domain | W3C validator |