Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnex | Structured version Visualization version GIF version |
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
Ref | Expression |
---|---|
intnex | ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intex 5256 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
2 | 1 | necon1bbii 2992 | . . 3 ⊢ (¬ ∩ 𝐴 ∈ V ↔ 𝐴 = ∅) |
3 | inteq 4879 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
4 | int0 4890 | . . . 4 ⊢ ∩ ∅ = V | |
5 | 3, 4 | eqtrdi 2795 | . . 3 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
6 | 2, 5 | sylbi 216 | . 2 ⊢ (¬ ∩ 𝐴 ∈ V → ∩ 𝐴 = V) |
7 | vprc 5234 | . . 3 ⊢ ¬ V ∈ V | |
8 | eleq1 2826 | . . 3 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
9 | 7, 8 | mtbiri 326 | . 2 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
10 | 6, 9 | impbii 208 | 1 ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-int 4877 |
This theorem is referenced by: intabs 5261 relintabex 41078 aiotavb 44469 |
Copyright terms: Public domain | W3C validator |