| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnex | Structured version Visualization version GIF version | ||
| Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnex | ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex 5282 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
| 2 | 1 | necon1bbii 2977 | . . 3 ⊢ (¬ ∩ 𝐴 ∈ V ↔ 𝐴 = ∅) |
| 3 | inteq 4900 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 4 | int0 4912 | . . . 4 ⊢ ∩ ∅ = V | |
| 5 | 3, 4 | eqtrdi 2782 | . . 3 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 6 | 2, 5 | sylbi 217 | . 2 ⊢ (¬ ∩ 𝐴 ∈ V → ∩ 𝐴 = V) |
| 7 | vprc 5253 | . . 3 ⊢ ¬ V ∈ V | |
| 8 | eleq1 2819 | . . 3 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
| 9 | 7, 8 | mtbiri 327 | . 2 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| 10 | 6, 9 | impbii 209 | 1 ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-in 3909 df-ss 3919 df-nul 4284 df-int 4898 |
| This theorem is referenced by: intabs 5287 relintabex 43613 aiotavb 47120 |
| Copyright terms: Public domain | W3C validator |