Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intnex | Structured version Visualization version GIF version |
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
Ref | Expression |
---|---|
intnex | ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intex 5261 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
2 | 1 | necon1bbii 2993 | . . 3 ⊢ (¬ ∩ 𝐴 ∈ V ↔ 𝐴 = ∅) |
3 | inteq 4882 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
4 | int0 4893 | . . . 4 ⊢ ∩ ∅ = V | |
5 | 3, 4 | eqtrdi 2794 | . . 3 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
6 | 2, 5 | sylbi 216 | . 2 ⊢ (¬ ∩ 𝐴 ∈ V → ∩ 𝐴 = V) |
7 | vprc 5239 | . . 3 ⊢ ¬ V ∈ V | |
8 | eleq1 2826 | . . 3 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
9 | 7, 8 | mtbiri 327 | . 2 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
10 | 6, 9 | impbii 208 | 1 ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-int 4880 |
This theorem is referenced by: intabs 5266 relintabex 41189 aiotavb 44582 |
Copyright terms: Public domain | W3C validator |