![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intnex | Structured version Visualization version GIF version |
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
Ref | Expression |
---|---|
intnex | ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intex 5362 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
2 | 1 | necon1bbii 2996 | . . 3 ⊢ (¬ ∩ 𝐴 ∈ V ↔ 𝐴 = ∅) |
3 | inteq 4973 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
4 | int0 4986 | . . . 4 ⊢ ∩ ∅ = V | |
5 | 3, 4 | eqtrdi 2796 | . . 3 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
6 | 2, 5 | sylbi 217 | . 2 ⊢ (¬ ∩ 𝐴 ∈ V → ∩ 𝐴 = V) |
7 | vprc 5333 | . . 3 ⊢ ¬ V ∈ V | |
8 | eleq1 2832 | . . 3 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
9 | 7, 8 | mtbiri 327 | . 2 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
10 | 6, 9 | impbii 209 | 1 ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-int 4971 |
This theorem is referenced by: intabs 5367 relintabex 43543 aiotavb 47005 |
Copyright terms: Public domain | W3C validator |