MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnex Structured version   Visualization version   GIF version

Theorem intnex 5257
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
intnex 𝐴 ∈ V ↔ 𝐴 = V)

Proof of Theorem intnex
StepHypRef Expression
1 intex 5256 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21necon1bbii 2992 . . 3 𝐴 ∈ V ↔ 𝐴 = ∅)
3 inteq 4879 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
4 int0 4890 . . . 4 ∅ = V
53, 4eqtrdi 2795 . . 3 (𝐴 = ∅ → 𝐴 = V)
62, 5sylbi 216 . 2 𝐴 ∈ V → 𝐴 = V)
7 vprc 5234 . . 3 ¬ V ∈ V
8 eleq1 2826 . . 3 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
97, 8mtbiri 326 . 2 ( 𝐴 = V → ¬ 𝐴 ∈ V)
106, 9impbii 208 1 𝐴 ∈ V ↔ 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-int 4877
This theorem is referenced by:  intabs  5261  relintabex  41078  aiotavb  44469
  Copyright terms: Public domain W3C validator