| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intnex | Structured version Visualization version GIF version | ||
| Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.) |
| Ref | Expression |
|---|---|
| intnex | ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex 5299 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) | |
| 2 | 1 | necon1bbii 2974 | . . 3 ⊢ (¬ ∩ 𝐴 ∈ V ↔ 𝐴 = ∅) |
| 3 | inteq 4913 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 4 | int0 4926 | . . . 4 ⊢ ∩ ∅ = V | |
| 5 | 3, 4 | eqtrdi 2780 | . . 3 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 6 | 2, 5 | sylbi 217 | . 2 ⊢ (¬ ∩ 𝐴 ∈ V → ∩ 𝐴 = V) |
| 7 | vprc 5270 | . . 3 ⊢ ¬ V ∈ V | |
| 8 | eleq1 2816 | . . 3 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
| 9 | 7, 8 | mtbiri 327 | . 2 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| 10 | 6, 9 | impbii 209 | 1 ⊢ (¬ ∩ 𝐴 ∈ V ↔ ∩ 𝐴 = V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 df-int 4911 |
| This theorem is referenced by: intabs 5304 relintabex 43570 aiotavb 47091 |
| Copyright terms: Public domain | W3C validator |