MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnex Structured version   Visualization version   GIF version

Theorem intnex 5285
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
intnex 𝐴 ∈ V ↔ 𝐴 = V)

Proof of Theorem intnex
StepHypRef Expression
1 intex 5284 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21necon1bbii 2978 . . 3 𝐴 ∈ V ↔ 𝐴 = ∅)
3 inteq 4900 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
4 int0 4912 . . . 4 ∅ = V
53, 4eqtrdi 2784 . . 3 (𝐴 = ∅ → 𝐴 = V)
62, 5sylbi 217 . 2 𝐴 ∈ V → 𝐴 = V)
7 vprc 5255 . . 3 ¬ V ∈ V
8 eleq1 2821 . . 3 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
97, 8mtbiri 327 . 2 ( 𝐴 = V → ¬ 𝐴 ∈ V)
106, 9impbii 209 1 𝐴 ∈ V ↔ 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283  df-int 4898
This theorem is referenced by:  intabs  5289  relintabex  43698  aiotavb  47214
  Copyright terms: Public domain W3C validator