MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnex Structured version   Visualization version   GIF version

Theorem intnex 5283
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
intnex 𝐴 ∈ V ↔ 𝐴 = V)

Proof of Theorem intnex
StepHypRef Expression
1 intex 5282 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21necon1bbii 2977 . . 3 𝐴 ∈ V ↔ 𝐴 = ∅)
3 inteq 4900 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
4 int0 4912 . . . 4 ∅ = V
53, 4eqtrdi 2782 . . 3 (𝐴 = ∅ → 𝐴 = V)
62, 5sylbi 217 . 2 𝐴 ∈ V → 𝐴 = V)
7 vprc 5253 . . 3 ¬ V ∈ V
8 eleq1 2819 . . 3 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
97, 8mtbiri 327 . 2 ( 𝐴 = V → ¬ 𝐴 ∈ V)
106, 9impbii 209 1 𝐴 ∈ V ↔ 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-in 3909  df-ss 3919  df-nul 4284  df-int 4898
This theorem is referenced by:  intabs  5287  relintabex  43613  aiotavb  47120
  Copyright terms: Public domain W3C validator