MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnex Structured version   Visualization version   GIF version

Theorem intnex 5363
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
intnex 𝐴 ∈ V ↔ 𝐴 = V)

Proof of Theorem intnex
StepHypRef Expression
1 intex 5362 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21necon1bbii 2996 . . 3 𝐴 ∈ V ↔ 𝐴 = ∅)
3 inteq 4973 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
4 int0 4986 . . . 4 ∅ = V
53, 4eqtrdi 2796 . . 3 (𝐴 = ∅ → 𝐴 = V)
62, 5sylbi 217 . 2 𝐴 ∈ V → 𝐴 = V)
7 vprc 5333 . . 3 ¬ V ∈ V
8 eleq1 2832 . . 3 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
97, 8mtbiri 327 . 2 ( 𝐴 = V → ¬ 𝐴 ∈ V)
106, 9impbii 209 1 𝐴 ∈ V ↔ 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353  df-int 4971
This theorem is referenced by:  intabs  5367  relintabex  43543  aiotavb  47005
  Copyright terms: Public domain W3C validator