MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intnex Structured version   Visualization version   GIF version

Theorem intnex 5320
Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005.)
Assertion
Ref Expression
intnex 𝐴 ∈ V ↔ 𝐴 = V)

Proof of Theorem intnex
StepHypRef Expression
1 intex 5319 . . . 4 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
21necon1bbii 2982 . . 3 𝐴 ∈ V ↔ 𝐴 = ∅)
3 inteq 4930 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
4 int0 4943 . . . 4 ∅ = V
53, 4eqtrdi 2787 . . 3 (𝐴 = ∅ → 𝐴 = V)
62, 5sylbi 217 . 2 𝐴 ∈ V → 𝐴 = V)
7 vprc 5290 . . 3 ¬ V ∈ V
8 eleq1 2823 . . 3 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
97, 8mtbiri 327 . 2 ( 𝐴 = V → ¬ 𝐴 ∈ V)
106, 9impbii 209 1 𝐴 ∈ V ↔ 𝐴 = V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313   cint 4927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-ss 3948  df-nul 4314  df-int 4928
This theorem is referenced by:  intabs  5324  relintabex  43572  aiotavb  47086
  Copyright terms: Public domain W3C validator