MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopab Structured version   Visualization version   GIF version

Theorem csbopab 5528
Description: Move substitution into a class abstraction. Version of csbopabgALT 5529 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbopab 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)

Proof of Theorem csbopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3875 . . . 4 (𝑤 = 𝐴𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑})
2 dfsbcq2 3766 . . . . 5 (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32opabbidv 5183 . . . 4 (𝑤 = 𝐴 → {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
41, 3eqeq12d 2750 . . 3 (𝑤 = 𝐴 → (𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} ↔ 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}))
5 vex 3461 . . . 4 𝑤 ∈ V
6 nfs1v 2155 . . . . 5 𝑥[𝑤 / 𝑥]𝜑
76nfopab 5186 . . . 4 𝑥{⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
8 sbequ12 2250 . . . . 5 (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑))
98opabbidv 5183 . . . 4 (𝑥 = 𝑤 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑})
105, 7, 9csbief 3906 . . 3 𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
114, 10vtoclg 3531 . 2 (𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
12 csbprc 4382 . . 3 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = ∅)
13 sbcex 3773 . . . . . . 7 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1413con3i 154 . . . . . 6 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜑)
1514nexdv 1935 . . . . 5 𝐴 ∈ V → ¬ ∃𝑧[𝐴 / 𝑥]𝜑)
1615nexdv 1935 . . . 4 𝐴 ∈ V → ¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
17 opabn0 5526 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} ≠ ∅ ↔ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
1817necon1bbii 2980 . . . 4 (¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑 ↔ {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
1916, 18sylib 218 . . 3 𝐴 ∈ V → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
2012, 19eqtr4d 2772 . 2 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
2111, 20pm2.61i 182 1 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wex 1778  [wsb 2063  wcel 2107  Vcvv 3457  [wsbc 3763  csb 3872  c0 4306  {copab 5179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-opab 5180
This theorem is referenced by:  csbmpt12  5530  csbcnv  5861
  Copyright terms: Public domain W3C validator