MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopab Structured version   Visualization version   GIF version

Theorem csbopab 5214
Description: Move substitution into a class abstraction. Version of csbopabgALT 5215 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbopab 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)

Proof of Theorem csbopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3742 . . . 4 (𝑤 = 𝐴𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑})
2 dfsbcq2 3647 . . . . 5 (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32opabbidv 4921 . . . 4 (𝑤 = 𝐴 → {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
41, 3eqeq12d 2832 . . 3 (𝑤 = 𝐴 → (𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} ↔ 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}))
5 vex 3405 . . . 4 𝑤 ∈ V
6 nfs1v 2288 . . . . 5 𝑥[𝑤 / 𝑥]𝜑
76nfopab 4923 . . . 4 𝑥{⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
8 sbequ12 2280 . . . . 5 (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑))
98opabbidv 4921 . . . 4 (𝑥 = 𝑤 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑})
105, 7, 9csbief 3764 . . 3 𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
114, 10vtoclg 3470 . 2 (𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
12 csbprc 4189 . . 3 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = ∅)
13 sbcex 3654 . . . . . . 7 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1413con3i 151 . . . . . 6 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜑)
1514nexdv 2027 . . . . 5 𝐴 ∈ V → ¬ ∃𝑧[𝐴 / 𝑥]𝜑)
1615nexdv 2027 . . . 4 𝐴 ∈ V → ¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
17 opabn0 5212 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} ≠ ∅ ↔ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
1817necon1bbii 3038 . . . 4 (¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑 ↔ {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
1916, 18sylib 209 . . 3 𝐴 ∈ V → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
2012, 19eqtr4d 2854 . 2 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
2111, 20pm2.61i 176 1 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1637  wex 1859  [wsb 2061  wcel 2157  Vcvv 3402  [wsbc 3644  csb 3739  c0 4127  {copab 4917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4986  ax-nul 4994  ax-pr 5107
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-fal 1651  df-ex 1860  df-nf 1864  df-sb 2062  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-sn 4382  df-pr 4384  df-op 4388  df-opab 4918
This theorem is referenced by:  csbmpt12  5216  csbcnv  5518
  Copyright terms: Public domain W3C validator