MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopab Structured version   Visualization version   GIF version

Theorem csbopab 5515
Description: Move substitution into a class abstraction. Version of csbopabgALT 5516 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbopab 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)

Proof of Theorem csbopab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3865 . . . 4 (𝑤 = 𝐴𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑})
2 dfsbcq2 3756 . . . . 5 (𝑤 = 𝐴 → ([𝑤 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
32opabbidv 5173 . . . 4 (𝑤 = 𝐴 → {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
41, 3eqeq12d 2745 . . 3 (𝑤 = 𝐴 → (𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑} ↔ 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}))
5 vex 3451 . . . 4 𝑤 ∈ V
6 nfs1v 2157 . . . . 5 𝑥[𝑤 / 𝑥]𝜑
76nfopab 5176 . . . 4 𝑥{⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
8 sbequ12 2252 . . . . 5 (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑))
98opabbidv 5173 . . . 4 (𝑥 = 𝑤 → {⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑})
105, 7, 9csbief 3896 . . 3 𝑤 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝑤 / 𝑥]𝜑}
114, 10vtoclg 3520 . 2 (𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
12 csbprc 4372 . . 3 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = ∅)
13 sbcex 3763 . . . . . . 7 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
1413con3i 154 . . . . . 6 𝐴 ∈ V → ¬ [𝐴 / 𝑥]𝜑)
1514nexdv 1936 . . . . 5 𝐴 ∈ V → ¬ ∃𝑧[𝐴 / 𝑥]𝜑)
1615nexdv 1936 . . . 4 𝐴 ∈ V → ¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
17 opabn0 5513 . . . . 5 ({⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} ≠ ∅ ↔ ∃𝑦𝑧[𝐴 / 𝑥]𝜑)
1817necon1bbii 2974 . . . 4 (¬ ∃𝑦𝑧[𝐴 / 𝑥]𝜑 ↔ {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
1916, 18sylib 218 . . 3 𝐴 ∈ V → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑} = ∅)
2012, 19eqtr4d 2767 . 2 𝐴 ∈ V → 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑})
2111, 20pm2.61i 182 1 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  [wsb 2065  wcel 2109  Vcvv 3447  [wsbc 3753  csb 3862  c0 4296  {copab 5169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-opab 5170
This theorem is referenced by:  csbmpt12  5517  csbcnv  5847
  Copyright terms: Public domain W3C validator