![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vma1 | Structured version Visualization version GIF version |
Description: The von Mangoldt function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.) |
Ref | Expression |
---|---|
vma1 | ⊢ (Λ‘1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 11222 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ) | |
2 | prmuz2 16640 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ≥‘2)) | |
3 | 2 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ (ℤ≥‘2)) |
4 | eluz2b2 12912 | . . . . . . . . . 10 ⊢ (𝑝 ∈ (ℤ≥‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝)) | |
5 | 3, 4 | sylib 217 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝 ∈ ℕ ∧ 1 < 𝑝)) |
6 | 5 | simpld 494 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ) |
7 | 6 | nnred 12234 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℝ) |
8 | nnnn0 12486 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
9 | 8 | adantl 481 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
10 | 7, 9 | reexpcld 14135 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ∈ ℝ) |
11 | 5 | simprd 495 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 < 𝑝) |
12 | 6 | nncnd 12235 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℂ) |
13 | 12 | exp1d 14113 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑1) = 𝑝) |
14 | 6 | nnge1d 12267 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑝) |
15 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
16 | nnuz 12872 | . . . . . . . . . 10 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | eleqtrdi 2842 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
18 | 7, 14, 17 | leexp2ad 14224 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑1) ≤ (𝑝↑𝑘)) |
19 | 13, 18 | eqbrtrrd 5172 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ≤ (𝑝↑𝑘)) |
20 | 1, 7, 10, 11, 19 | ltletrd 11381 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 < (𝑝↑𝑘)) |
21 | 1, 20 | ltned 11357 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ≠ (𝑝↑𝑘)) |
22 | 21 | neneqd 2944 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → ¬ 1 = (𝑝↑𝑘)) |
23 | 22 | nrexdv 3148 | . . 3 ⊢ (𝑝 ∈ ℙ → ¬ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘)) |
24 | 23 | nrex 3073 | . 2 ⊢ ¬ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘) |
25 | 1nn 12230 | . . . 4 ⊢ 1 ∈ ℕ | |
26 | isppw2 26870 | . . . 4 ⊢ (1 ∈ ℕ → ((Λ‘1) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘))) | |
27 | 25, 26 | ax-mp 5 | . . 3 ⊢ ((Λ‘1) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘)) |
28 | 27 | necon1bbii 2989 | . 2 ⊢ (¬ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘) ↔ (Λ‘1) = 0) |
29 | 24, 28 | mpbi 229 | 1 ⊢ (Λ‘1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ∃wrex 3069 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 < clt 11255 ≤ cle 11256 ℕcn 12219 2c2 12274 ℕ0cn0 12479 ℤ≥cuz 12829 ↑cexp 14034 ℙcprime 16615 Λcvma 26847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-oadd 8476 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-shft 15021 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-limsup 15422 df-clim 15439 df-rlim 15440 df-sum 15640 df-ef 16018 df-sin 16020 df-cos 16021 df-pi 16023 df-dvds 16205 df-gcd 16443 df-prm 16616 df-pc 16777 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18568 df-sgrp 18647 df-mnd 18663 df-submnd 18709 df-mulg 18991 df-cntz 19226 df-cmn 19695 df-psmet 21140 df-xmet 21141 df-met 21142 df-bl 21143 df-mopn 21144 df-fbas 21145 df-fg 21146 df-cnfld 21149 df-top 22629 df-topon 22646 df-topsp 22668 df-bases 22682 df-cld 22756 df-ntr 22757 df-cls 22758 df-nei 22835 df-lp 22873 df-perf 22874 df-cn 22964 df-cnp 22965 df-haus 23052 df-tx 23299 df-hmeo 23492 df-fil 23583 df-fm 23675 df-flim 23676 df-flf 23677 df-xms 24059 df-ms 24060 df-tms 24061 df-cncf 24631 df-limc 25628 df-dv 25629 df-log 26316 df-vma 26853 |
This theorem is referenced by: chp1 26922 |
Copyright terms: Public domain | W3C validator |