![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vma1 | Structured version Visualization version GIF version |
Description: The von Mangoldt function at 1. (Contributed by Mario Carneiro, 9-Apr-2016.) |
Ref | Expression |
---|---|
vma1 | ⊢ (Λ‘1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 10257 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ) | |
2 | prmuz2 15615 | . . . . . . . . . . 11 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ≥‘2)) | |
3 | 2 | adantr 466 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ (ℤ≥‘2)) |
4 | eluz2b2 11964 | . . . . . . . . . 10 ⊢ (𝑝 ∈ (ℤ≥‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝)) | |
5 | 3, 4 | sylib 208 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝 ∈ ℕ ∧ 1 < 𝑝)) |
6 | 5 | simpld 482 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ) |
7 | 6 | nnred 11237 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℝ) |
8 | nnnn0 11501 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
9 | 8 | adantl 467 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
10 | 7, 9 | reexpcld 13232 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑𝑘) ∈ ℝ) |
11 | 5 | simprd 483 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 < 𝑝) |
12 | 6 | nncnd 11238 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℂ) |
13 | 12 | exp1d 13210 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑1) = 𝑝) |
14 | 6 | nnge1d 11265 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ≤ 𝑝) |
15 | simpr 471 | . . . . . . . . . 10 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) | |
16 | nnuz 11925 | . . . . . . . . . 10 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | syl6eleq 2860 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ (ℤ≥‘1)) |
18 | 7, 14, 17 | leexp2ad 13248 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → (𝑝↑1) ≤ (𝑝↑𝑘)) |
19 | 13, 18 | eqbrtrrd 4810 | . . . . . . 7 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 𝑝 ≤ (𝑝↑𝑘)) |
20 | 1, 7, 10, 11, 19 | ltletrd 10399 | . . . . . 6 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 < (𝑝↑𝑘)) |
21 | 1, 20 | ltned 10375 | . . . . 5 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → 1 ≠ (𝑝↑𝑘)) |
22 | 21 | neneqd 2948 | . . . 4 ⊢ ((𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ) → ¬ 1 = (𝑝↑𝑘)) |
23 | 22 | nrexdv 3149 | . . 3 ⊢ (𝑝 ∈ ℙ → ¬ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘)) |
24 | 23 | nrex 3148 | . 2 ⊢ ¬ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘) |
25 | 1nn 11233 | . . . 4 ⊢ 1 ∈ ℕ | |
26 | isppw2 25062 | . . . 4 ⊢ (1 ∈ ℕ → ((Λ‘1) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘))) | |
27 | 25, 26 | ax-mp 5 | . . 3 ⊢ ((Λ‘1) ≠ 0 ↔ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘)) |
28 | 27 | necon1bbii 2992 | . 2 ⊢ (¬ ∃𝑝 ∈ ℙ ∃𝑘 ∈ ℕ 1 = (𝑝↑𝑘) ↔ (Λ‘1) = 0) |
29 | 24, 28 | mpbi 220 | 1 ⊢ (Λ‘1) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 0cc0 10138 1c1 10139 < clt 10276 ≤ cle 10277 ℕcn 11222 2c2 11272 ℕ0cn0 11494 ℤ≥cuz 11888 ↑cexp 13067 ℙcprime 15592 Λcvma 25039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-dvds 15190 df-gcd 15425 df-prm 15593 df-pc 15749 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 df-vma 25045 |
This theorem is referenced by: chp1 25114 |
Copyright terms: Public domain | W3C validator |