![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onnev | Structured version Visualization version GIF version |
Description: The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.) |
Ref | Expression |
---|---|
onnev | ⊢ On ≠ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsn0non 6486 | . . 3 ⊢ ¬ {{∅}} ∈ On | |
2 | snex 5430 | . . . 4 ⊢ {{∅}} ∈ V | |
3 | id 22 | . . . 4 ⊢ (On = V → On = V) | |
4 | 2, 3 | eleqtrrid 2840 | . . 3 ⊢ (On = V → {{∅}} ∈ On) |
5 | 1, 4 | mto 196 | . 2 ⊢ ¬ On = V |
6 | 5 | neir 2943 | 1 ⊢ On ≠ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 ≠ wne 2940 Vcvv 3474 ∅c0 4321 {csn 4627 Oncon0 6361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |