MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnev Structured version   Visualization version   GIF version

Theorem onnev 6435
Description: The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.)
Assertion
Ref Expression
onnev On ≠ V

Proof of Theorem onnev
StepHypRef Expression
1 snsn0non 6433 . . 3 ¬ {{∅}} ∈ On
2 snex 5375 . . . 4 {{∅}} ∈ V
3 id 22 . . . 4 (On = V → On = V)
42, 3eleqtrrid 2835 . . 3 (On = V → {{∅}} ∈ On)
51, 4mto 197 . 2 ¬ On = V
65neir 2928 1 On ≠ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  c0 4284  {csn 4577  Oncon0 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-on 6311
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator