MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onnev Structured version   Visualization version   GIF version

Theorem onnev 6488
Description: The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.)
Assertion
Ref Expression
onnev On ≠ V

Proof of Theorem onnev
StepHypRef Expression
1 snsn0non 6486 . . 3 ¬ {{∅}} ∈ On
2 snex 5430 . . . 4 {{∅}} ∈ V
3 id 22 . . . 4 (On = V → On = V)
42, 3eleqtrrid 2840 . . 3 (On = V → {{∅}} ∈ On)
51, 4mto 196 . 2 ¬ On = V
65neir 2943 1 On ≠ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  c0 4321  {csn 4627  Oncon0 6361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-ord 6364  df-on 6365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator