![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onnev | Structured version Visualization version GIF version |
Description: The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.) |
Ref | Expression |
---|---|
onnev | ⊢ On ≠ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsn0non 6494 | . . 3 ⊢ ¬ {{∅}} ∈ On | |
2 | snex 5433 | . . . 4 ⊢ {{∅}} ∈ V | |
3 | id 22 | . . . 4 ⊢ (On = V → On = V) | |
4 | 2, 3 | eleqtrrid 2836 | . . 3 ⊢ (On = V → {{∅}} ∈ On) |
5 | 1, 4 | mto 196 | . 2 ⊢ ¬ On = V |
6 | 5 | neir 2940 | 1 ⊢ On ≠ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ≠ wne 2937 Vcvv 3471 ∅c0 4323 {csn 4629 Oncon0 6369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-ord 6372 df-on 6373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |