| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onnev | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers is not equal to the universe. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof shortened by Wolf Lammen, 27-May-2024.) |
| Ref | Expression |
|---|---|
| onnev | ⊢ On ≠ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsn0non 6461 | . . 3 ⊢ ¬ {{∅}} ∈ On | |
| 2 | snex 5393 | . . . 4 ⊢ {{∅}} ∈ V | |
| 3 | id 22 | . . . 4 ⊢ (On = V → On = V) | |
| 4 | 2, 3 | eleqtrrid 2836 | . . 3 ⊢ (On = V → {{∅}} ∈ On) |
| 5 | 1, 4 | mto 197 | . 2 ⊢ ¬ On = V |
| 6 | 5 | neir 2929 | 1 ⊢ On ≠ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4298 {csn 4591 Oncon0 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-tr 5217 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-ord 6337 df-on 6338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |