![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlim2 | Structured version Visualization version GIF version |
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
nlim2 | ⊢ ¬ Lim 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8478 | . . . . . . . . 9 ⊢ 1o ∈ V | |
2 | 1 | prid2 4767 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 8476 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2832 | . . . . . . 7 ⊢ 1o ∈ 2o |
5 | 1on 8480 | . . . . . . . . 9 ⊢ 1o ∈ On | |
6 | 5 | onirri 6477 | . . . . . . . 8 ⊢ ¬ 1o ∈ 1o |
7 | eleq2 2822 | . . . . . . . 8 ⊢ (2o = 1o → (1o ∈ 2o ↔ 1o ∈ 1o)) | |
8 | 6, 7 | mtbiri 326 | . . . . . . 7 ⊢ (2o = 1o → ¬ 1o ∈ 2o) |
9 | 4, 8 | mt2 199 | . . . . . 6 ⊢ ¬ 2o = 1o |
10 | 9 | neir 2943 | . . . . 5 ⊢ 2o ≠ 1o |
11 | 3 | unieqi 4921 | . . . . . 6 ⊢ ∪ 2o = ∪ {∅, 1o} |
12 | 0ex 5307 | . . . . . . 7 ⊢ ∅ ∈ V | |
13 | 12, 1 | unipr 4926 | . . . . . 6 ⊢ ∪ {∅, 1o} = (∅ ∪ 1o) |
14 | 0un 4392 | . . . . . 6 ⊢ (∅ ∪ 1o) = 1o | |
15 | 11, 13, 14 | 3eqtri 2764 | . . . . 5 ⊢ ∪ 2o = 1o |
16 | 10, 15 | neeqtrri 3014 | . . . 4 ⊢ 2o ≠ ∪ 2o |
17 | 16 | neii 2942 | . . 3 ⊢ ¬ 2o = ∪ 2o |
18 | simp3 1138 | . . 3 ⊢ ((Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) → 2o = ∪ 2o) | |
19 | 17, 18 | mto 196 | . 2 ⊢ ¬ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) |
20 | df-lim 6369 | . 2 ⊢ (Lim 2o ↔ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o)) | |
21 | 19, 20 | mtbir 322 | 1 ⊢ ¬ Lim 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∪ cun 3946 ∅c0 4322 {cpr 4630 ∪ cuni 4908 Ord word 6363 Lim wlim 6365 1oc1o 8461 2oc2o 8462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-1o 8468 df-2o 8469 |
This theorem is referenced by: 2ellim 8501 |
Copyright terms: Public domain | W3C validator |