![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlim2 | Structured version Visualization version GIF version |
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
nlim2 | ⊢ ¬ Lim 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8532 | . . . . . . . . 9 ⊢ 1o ∈ V | |
2 | 1 | prid2 4788 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 8530 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2843 | . . . . . . 7 ⊢ 1o ∈ 2o |
5 | 1on 8534 | . . . . . . . . 9 ⊢ 1o ∈ On | |
6 | 5 | onirri 6508 | . . . . . . . 8 ⊢ ¬ 1o ∈ 1o |
7 | eleq2 2833 | . . . . . . . 8 ⊢ (2o = 1o → (1o ∈ 2o ↔ 1o ∈ 1o)) | |
8 | 6, 7 | mtbiri 327 | . . . . . . 7 ⊢ (2o = 1o → ¬ 1o ∈ 2o) |
9 | 4, 8 | mt2 200 | . . . . . 6 ⊢ ¬ 2o = 1o |
10 | 9 | neir 2949 | . . . . 5 ⊢ 2o ≠ 1o |
11 | 3 | unieqi 4943 | . . . . . 6 ⊢ ∪ 2o = ∪ {∅, 1o} |
12 | 0ex 5325 | . . . . . . 7 ⊢ ∅ ∈ V | |
13 | 12, 1 | unipr 4948 | . . . . . 6 ⊢ ∪ {∅, 1o} = (∅ ∪ 1o) |
14 | 0un 4419 | . . . . . 6 ⊢ (∅ ∪ 1o) = 1o | |
15 | 11, 13, 14 | 3eqtri 2772 | . . . . 5 ⊢ ∪ 2o = 1o |
16 | 10, 15 | neeqtrri 3020 | . . . 4 ⊢ 2o ≠ ∪ 2o |
17 | 16 | neii 2948 | . . 3 ⊢ ¬ 2o = ∪ 2o |
18 | simp3 1138 | . . 3 ⊢ ((Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) → 2o = ∪ 2o) | |
19 | 17, 18 | mto 197 | . 2 ⊢ ¬ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) |
20 | df-lim 6400 | . 2 ⊢ (Lim 2o ↔ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o)) | |
21 | 19, 20 | mtbir 323 | 1 ⊢ ¬ Lim 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∪ cun 3974 ∅c0 4352 {cpr 4650 ∪ cuni 4931 Ord word 6394 Lim wlim 6396 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: 2ellim 8555 |
Copyright terms: Public domain | W3C validator |