| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlim2 | Structured version Visualization version GIF version | ||
| Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim2 | ⊢ ¬ Lim 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex 8447 | . . . . . . . . 9 ⊢ 1o ∈ V | |
| 2 | 1 | prid2 4730 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
| 3 | df2o3 8445 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 4 | 2, 3 | eleqtrri 2828 | . . . . . . 7 ⊢ 1o ∈ 2o |
| 5 | 1on 8449 | . . . . . . . . 9 ⊢ 1o ∈ On | |
| 6 | 5 | onirri 6450 | . . . . . . . 8 ⊢ ¬ 1o ∈ 1o |
| 7 | eleq2 2818 | . . . . . . . 8 ⊢ (2o = 1o → (1o ∈ 2o ↔ 1o ∈ 1o)) | |
| 8 | 6, 7 | mtbiri 327 | . . . . . . 7 ⊢ (2o = 1o → ¬ 1o ∈ 2o) |
| 9 | 4, 8 | mt2 200 | . . . . . 6 ⊢ ¬ 2o = 1o |
| 10 | 9 | neir 2929 | . . . . 5 ⊢ 2o ≠ 1o |
| 11 | 3 | unieqi 4886 | . . . . . 6 ⊢ ∪ 2o = ∪ {∅, 1o} |
| 12 | 0ex 5265 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 13 | 12, 1 | unipr 4891 | . . . . . 6 ⊢ ∪ {∅, 1o} = (∅ ∪ 1o) |
| 14 | 0un 4362 | . . . . . 6 ⊢ (∅ ∪ 1o) = 1o | |
| 15 | 11, 13, 14 | 3eqtri 2757 | . . . . 5 ⊢ ∪ 2o = 1o |
| 16 | 10, 15 | neeqtrri 2999 | . . . 4 ⊢ 2o ≠ ∪ 2o |
| 17 | 16 | neii 2928 | . . 3 ⊢ ¬ 2o = ∪ 2o |
| 18 | simp3 1138 | . . 3 ⊢ ((Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) → 2o = ∪ 2o) | |
| 19 | 17, 18 | mto 197 | . 2 ⊢ ¬ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) |
| 20 | df-lim 6340 | . 2 ⊢ (Lim 2o ↔ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o)) | |
| 21 | 19, 20 | mtbir 323 | 1 ⊢ ¬ Lim 2o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∪ cun 3915 ∅c0 4299 {cpr 4594 ∪ cuni 4874 Ord word 6334 Lim wlim 6336 1oc1o 8430 2oc2o 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-1o 8437 df-2o 8438 |
| This theorem is referenced by: 2ellim 8466 |
| Copyright terms: Public domain | W3C validator |