MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim2 Structured version   Visualization version   GIF version

Theorem nlim2 8405
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
nlim2 ¬ Lim 2o

Proof of Theorem nlim2
StepHypRef Expression
1 1oex 8395 . . . . . . . . 9 1o ∈ V
21prid2 4713 . . . . . . . 8 1o ∈ {∅, 1o}
3 df2o3 8393 . . . . . . . 8 2o = {∅, 1o}
42, 3eleqtrri 2830 . . . . . . 7 1o ∈ 2o
5 1on 8397 . . . . . . . . 9 1o ∈ On
65onirri 6420 . . . . . . . 8 ¬ 1o ∈ 1o
7 eleq2 2820 . . . . . . . 8 (2o = 1o → (1o ∈ 2o ↔ 1o ∈ 1o))
86, 7mtbiri 327 . . . . . . 7 (2o = 1o → ¬ 1o ∈ 2o)
94, 8mt2 200 . . . . . 6 ¬ 2o = 1o
109neir 2931 . . . . 5 2o ≠ 1o
113unieqi 4868 . . . . . 6 2o = {∅, 1o}
12 0ex 5243 . . . . . . 7 ∅ ∈ V
1312, 1unipr 4873 . . . . . 6 {∅, 1o} = (∅ ∪ 1o)
14 0un 4343 . . . . . 6 (∅ ∪ 1o) = 1o
1511, 13, 143eqtri 2758 . . . . 5 2o = 1o
1610, 15neeqtrri 3001 . . . 4 2o 2o
1716neii 2930 . . 3 ¬ 2o = 2o
18 simp3 1138 . . 3 ((Ord 2o ∧ 2o ≠ ∅ ∧ 2o = 2o) → 2o = 2o)
1917, 18mto 197 . 2 ¬ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = 2o)
20 df-lim 6311 . 2 (Lim 2o ↔ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = 2o))
2119, 20mtbir 323 1 ¬ Lim 2o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cun 3895  c0 4280  {cpr 4575   cuni 4856  Ord word 6305  Lim wlim 6307  1oc1o 8378  2oc2o 8379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-1o 8385  df-2o 8386
This theorem is referenced by:  2ellim  8414
  Copyright terms: Public domain W3C validator