![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlim2 | Structured version Visualization version GIF version |
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
nlim2 | ⊢ ¬ Lim 2o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1oex 8515 | . . . . . . . . 9 ⊢ 1o ∈ V | |
2 | 1 | prid2 4768 | . . . . . . . 8 ⊢ 1o ∈ {∅, 1o} |
3 | df2o3 8513 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
4 | 2, 3 | eleqtrri 2838 | . . . . . . 7 ⊢ 1o ∈ 2o |
5 | 1on 8517 | . . . . . . . . 9 ⊢ 1o ∈ On | |
6 | 5 | onirri 6499 | . . . . . . . 8 ⊢ ¬ 1o ∈ 1o |
7 | eleq2 2828 | . . . . . . . 8 ⊢ (2o = 1o → (1o ∈ 2o ↔ 1o ∈ 1o)) | |
8 | 6, 7 | mtbiri 327 | . . . . . . 7 ⊢ (2o = 1o → ¬ 1o ∈ 2o) |
9 | 4, 8 | mt2 200 | . . . . . 6 ⊢ ¬ 2o = 1o |
10 | 9 | neir 2941 | . . . . 5 ⊢ 2o ≠ 1o |
11 | 3 | unieqi 4924 | . . . . . 6 ⊢ ∪ 2o = ∪ {∅, 1o} |
12 | 0ex 5313 | . . . . . . 7 ⊢ ∅ ∈ V | |
13 | 12, 1 | unipr 4929 | . . . . . 6 ⊢ ∪ {∅, 1o} = (∅ ∪ 1o) |
14 | 0un 4402 | . . . . . 6 ⊢ (∅ ∪ 1o) = 1o | |
15 | 11, 13, 14 | 3eqtri 2767 | . . . . 5 ⊢ ∪ 2o = 1o |
16 | 10, 15 | neeqtrri 3012 | . . . 4 ⊢ 2o ≠ ∪ 2o |
17 | 16 | neii 2940 | . . 3 ⊢ ¬ 2o = ∪ 2o |
18 | simp3 1137 | . . 3 ⊢ ((Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) → 2o = ∪ 2o) | |
19 | 17, 18 | mto 197 | . 2 ⊢ ¬ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o) |
20 | df-lim 6391 | . 2 ⊢ (Lim 2o ↔ (Ord 2o ∧ 2o ≠ ∅ ∧ 2o = ∪ 2o)) | |
21 | 19, 20 | mtbir 323 | 1 ⊢ ¬ Lim 2o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∪ cun 3961 ∅c0 4339 {cpr 4633 ∪ cuni 4912 Ord word 6385 Lim wlim 6387 1oc1o 8498 2oc2o 8499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-1o 8505 df-2o 8506 |
This theorem is referenced by: 2ellim 8536 |
Copyright terms: Public domain | W3C validator |