![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version |
Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4360 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | sucidg 6476 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | eleq2 2833 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
4 | 2, 3 | syl5ibcom 245 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
5 | 1, 4 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
6 | 0ex 5325 | . . . . . 6 ⊢ ∅ ∈ V | |
7 | eleq1 2832 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
10 | sucprc 6471 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
11 | 10 | eqeq1d 2742 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
12 | 9, 11 | mtbird 325 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
14 | 13 | neir 2949 | 1 ⊢ suc 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-suc 6401 |
This theorem is referenced by: 0elsuc 7871 peano3 7930 2on0 8538 oelim2 8651 limenpsi 9218 enp1iOLD 9342 ttrclselem2 9795 fseqdom 10095 dfac12lem2 10214 cfsuc 10326 cfpwsdom 10653 rankcf 10846 nosgnn0 27721 sltsolem1 27738 dfrdg2 35759 dfrdg4 35915 dfsucon 43485 ensucne0 43491 ensucne0OLD 43492 |
Copyright terms: Public domain | W3C validator |