| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version | ||
| Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4289 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 6390 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2817 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 245 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 6 | 0ex 5246 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | eleq1 2816 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
| 10 | sucprc 6385 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 11 | 10 | eqeq1d 2731 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
| 12 | 9, 11 | mtbird 325 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
| 14 | 13 | neir 2928 | 1 ⊢ suc 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∅c0 4284 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-un 3908 df-nul 4285 df-sn 4578 df-suc 6313 |
| This theorem is referenced by: 0elsuc 7768 peano3 7824 2on0 8402 oelim2 8513 limenpsi 9069 ttrclselem2 9622 fseqdom 9920 dfac12lem2 10039 cfsuc 10151 cfpwsdom 10478 rankcf 10671 nosgnn0 27568 sltsolem1 27585 dfrdg2 35779 dfrdg4 35935 dfsucon 43506 ensucne0 43512 ensucne0OLD 43513 |
| Copyright terms: Public domain | W3C validator |