![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version |
Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4329 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | sucidg 6444 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | eleq2 2820 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
4 | 2, 3 | syl5ibcom 244 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
5 | 1, 4 | mtoi 198 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
6 | 0ex 5306 | . . . . . 6 ⊢ ∅ ∈ V | |
7 | eleq1 2819 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
8 | 6, 7 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
10 | sucprc 6439 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
11 | 10 | eqeq1d 2732 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
12 | 9, 11 | mtbird 324 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
14 | 13 | neir 2941 | 1 ⊢ suc 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 Vcvv 3472 ∅c0 4321 suc csuc 6365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-v 3474 df-dif 3950 df-un 3952 df-nul 4322 df-sn 4628 df-suc 6369 |
This theorem is referenced by: 0elsuc 7825 peano3 7884 2on0 8484 oelim2 8597 limenpsi 9154 enp1iOLD 9282 findcard2OLD 9286 ttrclselem2 9723 fseqdom 10023 dfac12lem2 10141 cfsuc 10254 cfpwsdom 10581 rankcf 10774 nosgnn0 27397 sltsolem1 27414 dfrdg2 35071 dfrdg4 35227 dfsucon 42576 ensucne0 42582 ensucne0OLD 42583 |
Copyright terms: Public domain | W3C validator |