![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version |
Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4182 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | sucidg 6105 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | eleq2 2851 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
4 | 2, 3 | syl5ibcom 237 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
5 | 1, 4 | mtoi 191 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
6 | 0ex 5066 | . . . . . 6 ⊢ ∅ ∈ V | |
7 | eleq1 2850 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
8 | 6, 7 | mpbiri 250 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
9 | 8 | con3i 152 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
10 | sucprc 6102 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
11 | 10 | eqeq1d 2777 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
12 | 9, 11 | mtbird 317 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
13 | 5, 12 | pm2.61i 177 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
14 | 13 | neir 2967 | 1 ⊢ suc 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1507 ∈ wcel 2048 ≠ wne 2964 Vcvv 3412 ∅c0 4177 suc csuc 6029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2747 ax-nul 5065 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-v 3414 df-dif 3831 df-un 3833 df-nul 4178 df-sn 4440 df-suc 6033 |
This theorem is referenced by: 0elsuc 7364 peano3 7416 2on0 7911 oelim2 8018 limenpsi 8484 enp1i 8544 findcard2 8549 fseqdom 9242 dfac12lem2 9360 cfsuc 9473 cfpwsdom 9800 rankcf 9993 dfrdg2 32531 nosgnn0 32656 sltsolem1 32671 dfrdg4 32903 |
Copyright terms: Public domain | W3C validator |