| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version | ||
| Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4285 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 6389 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2820 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 245 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 6 | 0ex 5243 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | eleq1 2819 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
| 10 | sucprc 6384 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 11 | 10 | eqeq1d 2733 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
| 12 | 9, 11 | mtbird 325 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
| 14 | 13 | neir 2931 | 1 ⊢ suc 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-nul 4281 df-sn 4574 df-suc 6312 |
| This theorem is referenced by: 0elsuc 7765 peano3 7821 2on0 8399 oelim2 8510 limenpsi 9065 ttrclselem2 9616 fseqdom 9917 dfac12lem2 10036 cfsuc 10148 cfpwsdom 10475 rankcf 10668 nosgnn0 27597 sltsolem1 27614 dfrdg2 35837 dfrdg4 35995 dfsucon 43626 ensucne0 43632 ensucne0OLD 43633 |
| Copyright terms: Public domain | W3C validator |