| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version | ||
| Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4313 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 6435 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2823 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 245 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 6 | 0ex 5277 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | eleq1 2822 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
| 10 | sucprc 6430 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 11 | 10 | eqeq1d 2737 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
| 12 | 9, 11 | mtbird 325 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
| 14 | 13 | neir 2935 | 1 ⊢ suc 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∅c0 4308 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-suc 6358 |
| This theorem is referenced by: 0elsuc 7829 peano3 7887 2on0 8496 oelim2 8607 limenpsi 9166 enp1iOLD 9286 ttrclselem2 9740 fseqdom 10040 dfac12lem2 10159 cfsuc 10271 cfpwsdom 10598 rankcf 10791 nosgnn0 27622 sltsolem1 27639 dfrdg2 35813 dfrdg4 35969 dfsucon 43547 ensucne0 43553 ensucne0OLD 43554 |
| Copyright terms: Public domain | W3C validator |