Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version |
Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4270 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | sucidg 6361 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | eleq2 2825 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
4 | 2, 3 | syl5ibcom 245 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
5 | 1, 4 | mtoi 198 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
6 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
7 | eleq1 2824 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
10 | sucprc 6356 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
11 | 10 | eqeq1d 2738 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
12 | 9, 11 | mtbird 325 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
14 | 13 | neir 2944 | 1 ⊢ suc 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 ≠ wne 2941 Vcvv 3437 ∅c0 4262 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-v 3439 df-dif 3895 df-un 3897 df-nul 4263 df-sn 4566 df-suc 6287 |
This theorem is referenced by: 0elsuc 7714 peano3 7770 2on0 8344 oelim2 8457 limenpsi 8977 enp1i 9096 findcard2OLD 9100 ttrclselem2 9528 fseqdom 9828 dfac12lem2 9946 cfsuc 10059 cfpwsdom 10386 rankcf 10579 dfrdg2 33816 nosgnn0 33906 sltsolem1 33923 dfrdg4 34298 dfsucon 41168 ensucne0 41174 ensucne0OLD 41175 |
Copyright terms: Public domain | W3C validator |