| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version | ||
| Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4297 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 6403 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2817 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 245 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 6 | 0ex 5257 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | eleq1 2816 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
| 10 | sucprc 6398 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 11 | 10 | eqeq1d 2731 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
| 12 | 9, 11 | mtbird 325 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
| 14 | 13 | neir 2928 | 1 ⊢ suc 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3444 ∅c0 4292 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-un 3916 df-nul 4293 df-sn 4586 df-suc 6326 |
| This theorem is referenced by: 0elsuc 7790 peano3 7847 2on0 8425 oelim2 8536 limenpsi 9093 enp1iOLD 9201 ttrclselem2 9655 fseqdom 9955 dfac12lem2 10074 cfsuc 10186 cfpwsdom 10513 rankcf 10706 nosgnn0 27603 sltsolem1 27620 dfrdg2 35776 dfrdg4 35932 dfsucon 43505 ensucne0 43511 ensucne0OLD 43512 |
| Copyright terms: Public domain | W3C validator |