Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version |
Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
Ref | Expression |
---|---|
nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 4269 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
2 | sucidg 6341 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
3 | eleq2 2828 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
4 | 2, 3 | syl5ibcom 244 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
5 | 1, 4 | mtoi 198 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
6 | 0ex 5234 | . . . . . 6 ⊢ ∅ ∈ V | |
7 | eleq1 2827 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
8 | 6, 7 | mpbiri 257 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
10 | sucprc 6338 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
11 | 10 | eqeq1d 2741 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
12 | 9, 11 | mtbird 324 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
14 | 13 | neir 2947 | 1 ⊢ suc 𝐴 ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 Vcvv 3430 ∅c0 4261 suc csuc 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-sn 4567 df-suc 6269 |
This theorem is referenced by: 0elsuc 7670 peano3 7725 2on0 8290 oelim2 8402 limenpsi 8904 enp1i 9013 findcard2OLD 9017 ttrclselem2 9445 fseqdom 9766 dfac12lem2 9884 cfsuc 9997 cfpwsdom 10324 rankcf 10517 dfrdg2 33750 nosgnn0 33840 sltsolem1 33857 dfrdg4 34232 dfsucon 41092 ensucne0 41098 ensucne0OLD 41099 |
Copyright terms: Public domain | W3C validator |