| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nsuceq0 | Structured version Visualization version GIF version | ||
| Description: No successor is empty. (Contributed by NM, 3-Apr-1995.) |
| Ref | Expression |
|---|---|
| nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 4301 | . . . 4 ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg 6415 | . . . . 5 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 3 | eleq2 2817 | . . . . 5 ⊢ (suc 𝐴 = ∅ → (𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅)) | |
| 4 | 2, 3 | syl5ibcom 245 | . . . 4 ⊢ (𝐴 ∈ V → (suc 𝐴 = ∅ → 𝐴 ∈ ∅)) |
| 5 | 1, 4 | mtoi 199 | . . 3 ⊢ (𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 6 | 0ex 5262 | . . . . . 6 ⊢ ∅ ∈ V | |
| 7 | eleq1 2816 | . . . . . 6 ⊢ (𝐴 = ∅ → (𝐴 ∈ V ↔ ∅ ∈ V)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (𝐴 = ∅ → 𝐴 ∈ V) |
| 9 | 8 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝐴 = ∅) |
| 10 | sucprc 6410 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → suc 𝐴 = 𝐴) | |
| 11 | 10 | eqeq1d 2731 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (suc 𝐴 = ∅ ↔ 𝐴 = ∅)) |
| 12 | 9, 11 | mtbird 325 | . . 3 ⊢ (¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅) |
| 13 | 5, 12 | pm2.61i 182 | . 2 ⊢ ¬ suc 𝐴 = ∅ |
| 14 | 13 | neir 2928 | 1 ⊢ suc 𝐴 ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-suc 6338 |
| This theorem is referenced by: 0elsuc 7810 peano3 7867 2on0 8448 oelim2 8559 limenpsi 9116 enp1iOLD 9225 ttrclselem2 9679 fseqdom 9979 dfac12lem2 10098 cfsuc 10210 cfpwsdom 10537 rankcf 10730 nosgnn0 27570 sltsolem1 27587 dfrdg2 35783 dfrdg4 35939 dfsucon 43512 ensucne0 43518 ensucne0OLD 43519 |
| Copyright terms: Public domain | W3C validator |