Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version |
Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
ine0 | ⊢ i ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10940 | . . . 4 ⊢ 1 ≠ 0 | |
2 | 1 | neii 2945 | . . 3 ⊢ ¬ 1 = 0 |
3 | oveq2 7283 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
4 | ax-icn 10930 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | mul01i 11165 | . . . . . 6 ⊢ (i · 0) = 0 |
6 | 3, 5 | eqtr2di 2795 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
7 | 6 | oveq1d 7290 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
8 | ax-1cn 10929 | . . . . 5 ⊢ 1 ∈ ℂ | |
9 | 8 | addid2i 11163 | . . . 4 ⊢ (0 + 1) = 1 |
10 | ax-i2m1 10939 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
11 | 7, 9, 10 | 3eqtr3g 2801 | . . 3 ⊢ (i = 0 → 1 = 0) |
12 | 2, 11 | mto 196 | . 2 ⊢ ¬ i = 0 |
13 | 12 | neir 2946 | 1 ⊢ i ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2943 (class class class)co 7275 0cc0 10871 1c1 10872 ici 10873 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: inelr 11963 2muline0 12197 irec 13918 iexpcyc 13923 imre 14819 reim 14820 crim 14826 cjreb 14834 cnpart 14951 tanval2 15842 tanval3 15843 efival 15861 sinhval 15863 retanhcl 15868 tanhlt1 15869 tanhbnd 15870 itgz 24945 ibl0 24951 iblcnlem1 24952 itgcnlem 24954 iblss 24969 iblss2 24970 itgss 24976 itgeqa 24978 iblconst 24982 iblabsr 24994 iblmulc2 24995 itgsplit 25000 dvsincos 25145 efeq1 25684 tanregt0 25695 efif1olem4 25701 eflogeq 25757 cxpsqrtlem 25857 root1eq1 25908 ang180lem1 25959 ang180lem2 25960 ang180lem3 25961 atandm2 26027 2efiatan 26068 atantan 26073 dvatan 26085 atantayl2 26088 log2cnv 26094 ccfldextdgrr 31742 itgexpif 32586 logi 33700 iexpire 33701 iblmulc2nc 35842 ftc1anclem6 35855 proot1ex 41026 iblsplit 43507 sinh-conventional 46441 |
Copyright terms: Public domain | W3C validator |