| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11097 | . . . 4 ⊢ 1 ≠ 0 | |
| 2 | 1 | neii 2927 | . . 3 ⊢ ¬ 1 = 0 |
| 3 | oveq2 7361 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 4 | ax-icn 11087 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 11325 | . . . . . 6 ⊢ (i · 0) = 0 |
| 6 | 3, 5 | eqtr2di 2781 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 7 | 6 | oveq1d 7368 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 8 | ax-1cn 11086 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 9 | 8 | addlidi 11323 | . . . 4 ⊢ (0 + 1) = 1 |
| 10 | ax-i2m1 11096 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 11 | 7, 9, 10 | 3eqtr3g 2787 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
| 13 | 12 | neir 2928 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 (class class class)co 7353 0cc0 11028 1c1 11029 ici 11030 + caddc 11031 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: inelr 12137 2muline0 12368 irec 14127 iexpcyc 14133 imre 15034 reim 15035 crim 15041 cjreb 15049 cnpart 15166 tanval2 16061 tanval3 16062 efival 16080 sinhval 16082 retanhcl 16087 tanhlt1 16088 tanhbnd 16089 itgz 25699 ibl0 25705 iblcnlem1 25706 itgcnlem 25708 iblss 25723 iblss2 25724 itgss 25730 itgeqa 25732 iblconst 25736 iblabsr 25748 iblmulc2 25749 itgsplit 25754 dvsincos 25902 efeq1 26454 tanregt0 26465 efif1olem4 26471 logi 26513 eflogeq 26528 cxpsqrtlem 26628 root1eq1 26682 ang180lem1 26736 ang180lem2 26737 ang180lem3 26738 atandm2 26804 2efiatan 26845 atantan 26850 dvatan 26862 atantayl2 26865 log2cnv 26871 ccfldextdgrr 33658 constrelextdg2 33733 iconstr 33752 constrrecl 33755 cos9thpiminplylem3 33770 itgexpif 34593 iexpire 35727 iblmulc2nc 37684 ftc1anclem6 37697 ef11d 42332 cxpi11d 42336 proot1ex 43189 iblsplit 45967 sinh-conventional 49744 |
| Copyright terms: Public domain | W3C validator |