| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11070 | . . . 4 ⊢ 1 ≠ 0 | |
| 2 | 1 | neii 2930 | . . 3 ⊢ ¬ 1 = 0 |
| 3 | oveq2 7349 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 4 | ax-icn 11060 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 11298 | . . . . . 6 ⊢ (i · 0) = 0 |
| 6 | 3, 5 | eqtr2di 2783 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 7 | 6 | oveq1d 7356 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 8 | ax-1cn 11059 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 9 | 8 | addlidi 11296 | . . . 4 ⊢ (0 + 1) = 1 |
| 10 | ax-i2m1 11069 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 11 | 7, 9, 10 | 3eqtr3g 2789 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
| 13 | 12 | neir 2931 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2928 (class class class)co 7341 0cc0 11001 1c1 11002 ici 11003 + caddc 11004 · cmul 11006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 |
| This theorem is referenced by: inelr 12110 2muline0 12341 irec 14103 iexpcyc 14109 imre 15010 reim 15011 crim 15017 cjreb 15025 cnpart 15142 tanval2 16037 tanval3 16038 efival 16056 sinhval 16058 retanhcl 16063 tanhlt1 16064 tanhbnd 16065 itgz 25704 ibl0 25710 iblcnlem1 25711 itgcnlem 25713 iblss 25728 iblss2 25729 itgss 25735 itgeqa 25737 iblconst 25741 iblabsr 25753 iblmulc2 25754 itgsplit 25759 dvsincos 25907 efeq1 26459 tanregt0 26470 efif1olem4 26476 logi 26518 eflogeq 26533 cxpsqrtlem 26633 root1eq1 26687 ang180lem1 26741 ang180lem2 26742 ang180lem3 26743 atandm2 26809 2efiatan 26850 atantan 26855 dvatan 26867 atantayl2 26870 log2cnv 26876 ccfldextdgrr 33677 constrelextdg2 33752 iconstr 33771 constrrecl 33774 cos9thpiminplylem3 33789 itgexpif 34611 iexpire 35771 iblmulc2nc 37725 ftc1anclem6 37738 ef11d 42372 cxpi11d 42376 proot1ex 43229 iblsplit 46004 sinh-conventional 49771 |
| Copyright terms: Public domain | W3C validator |