| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11137 | . . . 4 ⊢ 1 ≠ 0 | |
| 2 | 1 | neii 2927 | . . 3 ⊢ ¬ 1 = 0 |
| 3 | oveq2 7395 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 4 | ax-icn 11127 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 11364 | . . . . . 6 ⊢ (i · 0) = 0 |
| 6 | 3, 5 | eqtr2di 2781 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 7 | 6 | oveq1d 7402 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 8 | ax-1cn 11126 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 9 | 8 | addlidi 11362 | . . . 4 ⊢ (0 + 1) = 1 |
| 10 | ax-i2m1 11136 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 11 | 7, 9, 10 | 3eqtr3g 2787 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
| 13 | 12 | neir 2928 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 (class class class)co 7387 0cc0 11068 1c1 11069 ici 11070 + caddc 11071 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 |
| This theorem is referenced by: inelr 12176 2muline0 12407 irec 14166 iexpcyc 14172 imre 15074 reim 15075 crim 15081 cjreb 15089 cnpart 15206 tanval2 16101 tanval3 16102 efival 16120 sinhval 16122 retanhcl 16127 tanhlt1 16128 tanhbnd 16129 itgz 25682 ibl0 25688 iblcnlem1 25689 itgcnlem 25691 iblss 25706 iblss2 25707 itgss 25713 itgeqa 25715 iblconst 25719 iblabsr 25731 iblmulc2 25732 itgsplit 25737 dvsincos 25885 efeq1 26437 tanregt0 26448 efif1olem4 26454 logi 26496 eflogeq 26511 cxpsqrtlem 26611 root1eq1 26665 ang180lem1 26719 ang180lem2 26720 ang180lem3 26721 atandm2 26787 2efiatan 26828 atantan 26833 dvatan 26845 atantayl2 26848 log2cnv 26854 ccfldextdgrr 33667 constrelextdg2 33737 iconstr 33756 constrrecl 33759 cos9thpiminplylem3 33774 itgexpif 34597 iexpire 35722 iblmulc2nc 37679 ftc1anclem6 37692 ef11d 42327 cxpi11d 42331 proot1ex 43185 iblsplit 45964 sinh-conventional 49728 |
| Copyright terms: Public domain | W3C validator |