Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version |
Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
ine0 | ⊢ i ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10871 | . . . 4 ⊢ 1 ≠ 0 | |
2 | 1 | neii 2944 | . . 3 ⊢ ¬ 1 = 0 |
3 | oveq2 7263 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
4 | ax-icn 10861 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | mul01i 11095 | . . . . . 6 ⊢ (i · 0) = 0 |
6 | 3, 5 | eqtr2di 2796 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
7 | 6 | oveq1d 7270 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
8 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
9 | 8 | addid2i 11093 | . . . 4 ⊢ (0 + 1) = 1 |
10 | ax-i2m1 10870 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
11 | 7, 9, 10 | 3eqtr3g 2802 | . . 3 ⊢ (i = 0 → 1 = 0) |
12 | 2, 11 | mto 196 | . 2 ⊢ ¬ i = 0 |
13 | 12 | neir 2945 | 1 ⊢ i ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2942 (class class class)co 7255 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: inelr 11893 2muline0 12127 irec 13846 iexpcyc 13851 imre 14747 reim 14748 crim 14754 cjreb 14762 cnpart 14879 tanval2 15770 tanval3 15771 efival 15789 sinhval 15791 retanhcl 15796 tanhlt1 15797 tanhbnd 15798 itgz 24850 ibl0 24856 iblcnlem1 24857 itgcnlem 24859 iblss 24874 iblss2 24875 itgss 24881 itgeqa 24883 iblconst 24887 iblabsr 24899 iblmulc2 24900 itgsplit 24905 dvsincos 25050 efeq1 25589 tanregt0 25600 efif1olem4 25606 eflogeq 25662 cxpsqrtlem 25762 root1eq1 25813 ang180lem1 25864 ang180lem2 25865 ang180lem3 25866 atandm2 25932 2efiatan 25973 atantan 25978 dvatan 25990 atantayl2 25993 log2cnv 25999 ccfldextdgrr 31644 itgexpif 32486 logi 33606 iexpire 33607 iblmulc2nc 35769 ftc1anclem6 35782 proot1ex 40942 iblsplit 43397 sinh-conventional 46327 |
Copyright terms: Public domain | W3C validator |