| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11113 | . . . 4 ⊢ 1 ≠ 0 | |
| 2 | 1 | neii 2927 | . . 3 ⊢ ¬ 1 = 0 |
| 3 | oveq2 7377 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 4 | ax-icn 11103 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 11340 | . . . . . 6 ⊢ (i · 0) = 0 |
| 6 | 3, 5 | eqtr2di 2781 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 7 | 6 | oveq1d 7384 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 8 | ax-1cn 11102 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 9 | 8 | addlidi 11338 | . . . 4 ⊢ (0 + 1) = 1 |
| 10 | ax-i2m1 11112 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 11 | 7, 9, 10 | 3eqtr3g 2787 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
| 13 | 12 | neir 2928 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2925 (class class class)co 7369 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 |
| This theorem is referenced by: inelr 12152 2muline0 12383 irec 14142 iexpcyc 14148 imre 15050 reim 15051 crim 15057 cjreb 15065 cnpart 15182 tanval2 16077 tanval3 16078 efival 16096 sinhval 16098 retanhcl 16103 tanhlt1 16104 tanhbnd 16105 itgz 25658 ibl0 25664 iblcnlem1 25665 itgcnlem 25667 iblss 25682 iblss2 25683 itgss 25689 itgeqa 25691 iblconst 25695 iblabsr 25707 iblmulc2 25708 itgsplit 25713 dvsincos 25861 efeq1 26413 tanregt0 26424 efif1olem4 26430 logi 26472 eflogeq 26487 cxpsqrtlem 26587 root1eq1 26641 ang180lem1 26695 ang180lem2 26696 ang180lem3 26697 atandm2 26763 2efiatan 26804 atantan 26809 dvatan 26821 atantayl2 26824 log2cnv 26830 ccfldextdgrr 33640 constrelextdg2 33710 iconstr 33729 constrrecl 33732 cos9thpiminplylem3 33747 itgexpif 34570 iexpire 35695 iblmulc2nc 37652 ftc1anclem6 37665 ef11d 42300 cxpi11d 42304 proot1ex 43158 iblsplit 45937 sinh-conventional 49701 |
| Copyright terms: Public domain | W3C validator |