![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version |
Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
ine0 | ⊢ i ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 11222 | . . . 4 ⊢ 1 ≠ 0 | |
2 | 1 | neii 2940 | . . 3 ⊢ ¬ 1 = 0 |
3 | oveq2 7439 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
4 | ax-icn 11212 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | mul01i 11449 | . . . . . 6 ⊢ (i · 0) = 0 |
6 | 3, 5 | eqtr2di 2792 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
7 | 6 | oveq1d 7446 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
8 | ax-1cn 11211 | . . . . 5 ⊢ 1 ∈ ℂ | |
9 | 8 | addlidi 11447 | . . . 4 ⊢ (0 + 1) = 1 |
10 | ax-i2m1 11221 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
11 | 7, 9, 10 | 3eqtr3g 2798 | . . 3 ⊢ (i = 0 → 1 = 0) |
12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
13 | 12 | neir 2941 | 1 ⊢ i ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2938 (class class class)co 7431 0cc0 11153 1c1 11154 ici 11155 + caddc 11156 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 |
This theorem is referenced by: inelr 12254 2muline0 12488 irec 14237 iexpcyc 14243 imre 15144 reim 15145 crim 15151 cjreb 15159 cnpart 15276 tanval2 16166 tanval3 16167 efival 16185 sinhval 16187 retanhcl 16192 tanhlt1 16193 tanhbnd 16194 itgz 25831 ibl0 25837 iblcnlem1 25838 itgcnlem 25840 iblss 25855 iblss2 25856 itgss 25862 itgeqa 25864 iblconst 25868 iblabsr 25880 iblmulc2 25881 itgsplit 25886 dvsincos 26034 efeq1 26585 tanregt0 26596 efif1olem4 26602 logi 26644 eflogeq 26659 cxpsqrtlem 26759 root1eq1 26813 ang180lem1 26867 ang180lem2 26868 ang180lem3 26869 atandm2 26935 2efiatan 26976 atantan 26981 dvatan 26993 atantayl2 26996 log2cnv 27002 ccfldextdgrr 33697 constrelextdg2 33752 itgexpif 34600 iexpire 35715 iblmulc2nc 37672 ftc1anclem6 37685 ef11d 42354 cxpi11d 42358 proot1ex 43185 iblsplit 45922 sinh-conventional 48970 |
Copyright terms: Public domain | W3C validator |