| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11086 | . . . 4 ⊢ 1 ≠ 0 | |
| 2 | 1 | neii 2931 | . . 3 ⊢ ¬ 1 = 0 |
| 3 | oveq2 7363 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 4 | ax-icn 11076 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 11314 | . . . . . 6 ⊢ (i · 0) = 0 |
| 6 | 3, 5 | eqtr2di 2785 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 7 | 6 | oveq1d 7370 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 8 | ax-1cn 11075 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 9 | 8 | addlidi 11312 | . . . 4 ⊢ (0 + 1) = 1 |
| 10 | ax-i2m1 11085 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 11 | 7, 9, 10 | 3eqtr3g 2791 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
| 13 | 12 | neir 2932 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2929 (class class class)co 7355 0cc0 11017 1c1 11018 ici 11019 + caddc 11020 · cmul 11022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 |
| This theorem is referenced by: inelr 12126 2muline0 12357 irec 14115 iexpcyc 14121 imre 15022 reim 15023 crim 15029 cjreb 15037 cnpart 15154 tanval2 16049 tanval3 16050 efival 16068 sinhval 16070 retanhcl 16075 tanhlt1 16076 tanhbnd 16077 itgz 25729 ibl0 25735 iblcnlem1 25736 itgcnlem 25738 iblss 25753 iblss2 25754 itgss 25760 itgeqa 25762 iblconst 25766 iblabsr 25778 iblmulc2 25779 itgsplit 25784 dvsincos 25932 efeq1 26484 tanregt0 26495 efif1olem4 26501 logi 26543 eflogeq 26558 cxpsqrtlem 26658 root1eq1 26712 ang180lem1 26766 ang180lem2 26767 ang180lem3 26768 atandm2 26834 2efiatan 26875 atantan 26880 dvatan 26892 atantayl2 26895 log2cnv 26901 ccfldextdgrr 33757 constrelextdg2 33832 iconstr 33851 constrrecl 33854 cos9thpiminplylem3 33869 itgexpif 34691 iexpire 35851 iblmulc2nc 37798 ftc1anclem6 37811 ef11d 42509 cxpi11d 42513 proot1ex 43353 iblsplit 46126 sinh-conventional 49900 |
| Copyright terms: Public domain | W3C validator |