| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11144 | . . . 4 ⊢ 1 ≠ 0 | |
| 2 | 1 | neii 2928 | . . 3 ⊢ ¬ 1 = 0 |
| 3 | oveq2 7398 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 4 | ax-icn 11134 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 11371 | . . . . . 6 ⊢ (i · 0) = 0 |
| 6 | 3, 5 | eqtr2di 2782 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 7 | 6 | oveq1d 7405 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 8 | ax-1cn 11133 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 9 | 8 | addlidi 11369 | . . . 4 ⊢ (0 + 1) = 1 |
| 10 | ax-i2m1 11143 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 11 | 7, 9, 10 | 3eqtr3g 2788 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
| 13 | 12 | neir 2929 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2926 (class class class)co 7390 0cc0 11075 1c1 11076 ici 11077 + caddc 11078 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: inelr 12183 2muline0 12414 irec 14173 iexpcyc 14179 imre 15081 reim 15082 crim 15088 cjreb 15096 cnpart 15213 tanval2 16108 tanval3 16109 efival 16127 sinhval 16129 retanhcl 16134 tanhlt1 16135 tanhbnd 16136 itgz 25689 ibl0 25695 iblcnlem1 25696 itgcnlem 25698 iblss 25713 iblss2 25714 itgss 25720 itgeqa 25722 iblconst 25726 iblabsr 25738 iblmulc2 25739 itgsplit 25744 dvsincos 25892 efeq1 26444 tanregt0 26455 efif1olem4 26461 logi 26503 eflogeq 26518 cxpsqrtlem 26618 root1eq1 26672 ang180lem1 26726 ang180lem2 26727 ang180lem3 26728 atandm2 26794 2efiatan 26835 atantan 26840 dvatan 26852 atantayl2 26855 log2cnv 26861 ccfldextdgrr 33674 constrelextdg2 33744 iconstr 33763 constrrecl 33766 cos9thpiminplylem3 33781 itgexpif 34604 iexpire 35729 iblmulc2nc 37686 ftc1anclem6 37699 ef11d 42334 cxpi11d 42338 proot1ex 43192 iblsplit 45971 sinh-conventional 49732 |
| Copyright terms: Public domain | W3C validator |