| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| ine0 | ⊢ i ≠ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11198 | . . . 4 ⊢ 1 ≠ 0 | |
| 2 | 1 | neii 2934 | . . 3 ⊢ ¬ 1 = 0 |
| 3 | oveq2 7413 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
| 4 | ax-icn 11188 | . . . . . . 7 ⊢ i ∈ ℂ | |
| 5 | 4 | mul01i 11425 | . . . . . 6 ⊢ (i · 0) = 0 |
| 6 | 3, 5 | eqtr2di 2787 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
| 7 | 6 | oveq1d 7420 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
| 8 | ax-1cn 11187 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 9 | 8 | addlidi 11423 | . . . 4 ⊢ (0 + 1) = 1 |
| 10 | ax-i2m1 11197 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 11 | 7, 9, 10 | 3eqtr3g 2793 | . . 3 ⊢ (i = 0 → 1 = 0) |
| 12 | 2, 11 | mto 197 | . 2 ⊢ ¬ i = 0 |
| 13 | 12 | neir 2935 | 1 ⊢ i ≠ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2932 (class class class)co 7405 0cc0 11129 1c1 11130 ici 11131 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 |
| This theorem is referenced by: inelr 12230 2muline0 12466 irec 14219 iexpcyc 14225 imre 15127 reim 15128 crim 15134 cjreb 15142 cnpart 15259 tanval2 16151 tanval3 16152 efival 16170 sinhval 16172 retanhcl 16177 tanhlt1 16178 tanhbnd 16179 itgz 25734 ibl0 25740 iblcnlem1 25741 itgcnlem 25743 iblss 25758 iblss2 25759 itgss 25765 itgeqa 25767 iblconst 25771 iblabsr 25783 iblmulc2 25784 itgsplit 25789 dvsincos 25937 efeq1 26489 tanregt0 26500 efif1olem4 26506 logi 26548 eflogeq 26563 cxpsqrtlem 26663 root1eq1 26717 ang180lem1 26771 ang180lem2 26772 ang180lem3 26773 atandm2 26839 2efiatan 26880 atantan 26885 dvatan 26897 atantayl2 26900 log2cnv 26906 ccfldextdgrr 33713 constrelextdg2 33781 iconstr 33800 constrrecl 33803 cos9thpiminplylem3 33818 itgexpif 34638 iexpire 35752 iblmulc2nc 37709 ftc1anclem6 37722 ef11d 42388 cxpi11d 42392 proot1ex 43220 iblsplit 45995 sinh-conventional 49603 |
| Copyright terms: Public domain | W3C validator |