Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ine0 | Structured version Visualization version GIF version |
Description: The imaginary unit i is not zero. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
ine0 | ⊢ i ≠ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10637 | . . . 4 ⊢ 1 ≠ 0 | |
2 | 1 | neii 2954 | . . 3 ⊢ ¬ 1 = 0 |
3 | oveq2 7159 | . . . . . 6 ⊢ (i = 0 → (i · i) = (i · 0)) | |
4 | ax-icn 10627 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | mul01i 10861 | . . . . . 6 ⊢ (i · 0) = 0 |
6 | 3, 5 | eqtr2di 2811 | . . . . 5 ⊢ (i = 0 → 0 = (i · i)) |
7 | 6 | oveq1d 7166 | . . . 4 ⊢ (i = 0 → (0 + 1) = ((i · i) + 1)) |
8 | ax-1cn 10626 | . . . . 5 ⊢ 1 ∈ ℂ | |
9 | 8 | addid2i 10859 | . . . 4 ⊢ (0 + 1) = 1 |
10 | ax-i2m1 10636 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
11 | 7, 9, 10 | 3eqtr3g 2817 | . . 3 ⊢ (i = 0 → 1 = 0) |
12 | 2, 11 | mto 200 | . 2 ⊢ ¬ i = 0 |
13 | 12 | neir 2955 | 1 ⊢ i ≠ 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2952 (class class class)co 7151 0cc0 10568 1c1 10569 ici 10570 + caddc 10571 · cmul 10573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-ov 7154 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10708 df-mnf 10709 df-ltxr 10711 |
This theorem is referenced by: inelr 11657 2muline0 11891 irec 13607 iexpcyc 13612 imre 14508 reim 14509 crim 14515 cjreb 14523 cnpart 14640 tanval2 15527 tanval3 15528 efival 15546 sinhval 15548 retanhcl 15553 tanhlt1 15554 tanhbnd 15555 itgz 24473 ibl0 24479 iblcnlem1 24480 itgcnlem 24482 iblss 24497 iblss2 24498 itgss 24504 itgeqa 24506 iblconst 24510 iblabsr 24522 iblmulc2 24523 itgsplit 24528 dvsincos 24673 efeq1 25212 tanregt0 25223 efif1olem4 25229 eflogeq 25285 cxpsqrtlem 25385 root1eq1 25436 ang180lem1 25487 ang180lem2 25488 ang180lem3 25489 atandm2 25555 2efiatan 25596 atantan 25601 dvatan 25613 atantayl2 25616 log2cnv 25622 ccfldextdgrr 31256 itgexpif 32098 logi 33208 iexpire 33209 iblmulc2nc 35395 ftc1anclem6 35408 proot1ex 40511 iblsplit 42967 sinh-conventional 45649 |
Copyright terms: Public domain | W3C validator |