Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neii | Structured version Visualization version GIF version |
Description: Inference associated with df-ne 2943. (Contributed by BJ, 7-Jul-2018.) |
Ref | Expression |
---|---|
neii.1 | ⊢ 𝐴 ≠ 𝐵 |
Ref | Expression |
---|---|
neii | ⊢ ¬ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neii.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
2 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ ¬ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: nesymi 3000 nemtbir 3039 snsssn 4769 2dom 8774 map2xp 8883 updjudhcoinrg 9622 pm54.43lem 9689 canthp1lem2 10340 ine0 11340 inelr 11893 xrltnr 12784 pnfnlt 12793 prprrab 14115 wrdlen2i 14583 3lcm2e6woprm 16248 6lcm4e12 16249 m1dvdsndvds 16427 fnpr2ob 17186 fvprif 17189 pmatcollpw3fi1lem1 21843 sinhalfpilem 25525 coseq1 25586 2lgslem3 26457 2lgslem4 26459 axlowdimlem13 27225 axlowdim1 27230 umgredgnlp 27420 wwlksnext 28159 norm1exi 29513 largei 30530 ind1a 31887 ballotlemii 32370 sgnnbi 32412 sgnpbi 32413 gonanegoal 33214 gonan0 33254 goaln0 33255 fmlasucdisj 33261 ex-sategoelelomsuc 33288 ex-sategoelel12 33289 dfrdg2 33677 ssttrcl 33701 ttrclselem2 33712 sltval2 33786 nosgnn0 33788 sltintdifex 33791 sltres 33792 sltsolem1 33805 nolt02o 33825 nogt01o 33826 dfrdg4 34180 bj-1nel0 35071 bj-pr21val 35130 finxpreclem2 35488 epnsymrel 36603 sn-inelr 40356 0dioph 40516 clsk1indlem1 41544 dirkercncflem2 43535 fourierdlem60 43597 fourierdlem61 43598 afv20defat 44611 fun2dmnopgexmpl 44663 itcoval1 45897 line2ylem 45985 |
Copyright terms: Public domain | W3C validator |