MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosgnn0i Structured version   Visualization version   GIF version

Theorem nosgnn0i 27722
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.)
Hypothesis
Ref Expression
nosgnn0i.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
nosgnn0i ∅ ≠ 𝑋

Proof of Theorem nosgnn0i
StepHypRef Expression
1 nosgnn0 27721 . . 3 ¬ ∅ ∈ {1o, 2o}
2 nosgnn0i.1 . . . 4 𝑋 ∈ {1o, 2o}
3 eleq1 2832 . . . 4 (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o}))
42, 3mpbiri 258 . . 3 (∅ = 𝑋 → ∅ ∈ {1o, 2o})
51, 4mto 197 . 2 ¬ ∅ = 𝑋
65neir 2949 1 ∅ ≠ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wne 2946  c0 4352  {cpr 4650  1oc1o 8515  2oc2o 8516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-pr 4651  df-suc 6401  df-1o 8522  df-2o 8523
This theorem is referenced by:  sltres  27725  noextenddif  27731  nolesgn2ores  27735  nosepnelem  27742  nosepdmlem  27746  nolt02o  27758  nosupbnd1lem3  27773  nosupbnd1lem5  27775  nosupbnd2lem1  27778
  Copyright terms: Public domain W3C validator