MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosgnn0i Structured version   Visualization version   GIF version

Theorem nosgnn0i 27578
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.)
Hypothesis
Ref Expression
nosgnn0i.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
nosgnn0i ∅ ≠ 𝑋

Proof of Theorem nosgnn0i
StepHypRef Expression
1 nosgnn0 27577 . . 3 ¬ ∅ ∈ {1o, 2o}
2 nosgnn0i.1 . . . 4 𝑋 ∈ {1o, 2o}
3 eleq1 2817 . . . 4 (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o}))
42, 3mpbiri 258 . . 3 (∅ = 𝑋 → ∅ ∈ {1o, 2o})
51, 4mto 197 . 2 ¬ ∅ = 𝑋
65neir 2929 1 ∅ ≠ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2926  c0 4299  {cpr 4594  1oc1o 8430  2oc2o 8431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-un 3922  df-nul 4300  df-sn 4593  df-pr 4595  df-suc 6341  df-1o 8437  df-2o 8438
This theorem is referenced by:  sltres  27581  noextenddif  27587  nolesgn2ores  27591  nosepnelem  27598  nosepdmlem  27602  nolt02o  27614  nosupbnd1lem3  27629  nosupbnd1lem5  27631  nosupbnd2lem1  27634
  Copyright terms: Public domain W3C validator