![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nosgnn0i | Structured version Visualization version GIF version |
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
Ref | Expression |
---|---|
nosgnn0i.1 | ⊢ 𝑋 ∈ {1o, 2o} |
Ref | Expression |
---|---|
nosgnn0i | ⊢ ∅ ≠ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 27721 | . . 3 ⊢ ¬ ∅ ∈ {1o, 2o} | |
2 | nosgnn0i.1 | . . . 4 ⊢ 𝑋 ∈ {1o, 2o} | |
3 | eleq1 2832 | . . . 4 ⊢ (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o})) | |
4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (∅ = 𝑋 → ∅ ∈ {1o, 2o}) |
5 | 1, 4 | mto 197 | . 2 ⊢ ¬ ∅ = 𝑋 |
6 | 5 | neir 2949 | 1 ⊢ ∅ ≠ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {cpr 4650 1oc1o 8515 2oc2o 8516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-pr 4651 df-suc 6401 df-1o 8522 df-2o 8523 |
This theorem is referenced by: sltres 27725 noextenddif 27731 nolesgn2ores 27735 nosepnelem 27742 nosepdmlem 27746 nolt02o 27758 nosupbnd1lem3 27773 nosupbnd1lem5 27775 nosupbnd2lem1 27778 |
Copyright terms: Public domain | W3C validator |