| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nosgnn0i | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
| Ref | Expression |
|---|---|
| nosgnn0i.1 | ⊢ 𝑋 ∈ {1o, 2o} |
| Ref | Expression |
|---|---|
| nosgnn0i | ⊢ ∅ ≠ 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nosgnn0 27607 | . . 3 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 2 | nosgnn0i.1 | . . . 4 ⊢ 𝑋 ∈ {1o, 2o} | |
| 3 | eleq1 2821 | . . . 4 ⊢ (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o})) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (∅ = 𝑋 → ∅ ∈ {1o, 2o}) |
| 5 | 1, 4 | mto 197 | . 2 ⊢ ¬ ∅ = 𝑋 |
| 6 | 5 | neir 2933 | 1 ⊢ ∅ ≠ 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ≠ wne 2930 ∅c0 4284 {cpr 4579 1oc1o 8387 2oc2o 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-v 3440 df-dif 3902 df-un 3904 df-nul 4285 df-sn 4578 df-pr 4580 df-suc 6320 df-1o 8394 df-2o 8395 |
| This theorem is referenced by: sltres 27611 noextenddif 27617 nolesgn2ores 27621 nosepnelem 27628 nosepdmlem 27632 nolt02o 27644 nosupbnd1lem3 27659 nosupbnd1lem5 27661 nosupbnd2lem1 27664 |
| Copyright terms: Public domain | W3C validator |