Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosgnn0i Structured version   Visualization version   GIF version

Theorem nosgnn0i 33789
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.)
Hypothesis
Ref Expression
nosgnn0i.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
nosgnn0i ∅ ≠ 𝑋

Proof of Theorem nosgnn0i
StepHypRef Expression
1 nosgnn0 33788 . . 3 ¬ ∅ ∈ {1o, 2o}
2 nosgnn0i.1 . . . 4 𝑋 ∈ {1o, 2o}
3 eleq1 2826 . . . 4 (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o}))
42, 3mpbiri 257 . . 3 (∅ = 𝑋 → ∅ ∈ {1o, 2o})
51, 4mto 196 . 2 ¬ ∅ = 𝑋
65neir 2945 1 ∅ ≠ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wne 2942  c0 4253  {cpr 4560  1oc1o 8260  2oc2o 8261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561  df-suc 6257  df-1o 8267  df-2o 8268
This theorem is referenced by:  sltres  33792  noextenddif  33798  nolesgn2ores  33802  nosepnelem  33809  nosepdmlem  33813  nolt02o  33825  nosupbnd1lem3  33840  nosupbnd1lem5  33842  nosupbnd2lem1  33845
  Copyright terms: Public domain W3C validator