| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nosgnn0i | Structured version Visualization version GIF version | ||
| Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
| Ref | Expression |
|---|---|
| nosgnn0i.1 | ⊢ 𝑋 ∈ {1o, 2o} |
| Ref | Expression |
|---|---|
| nosgnn0i | ⊢ ∅ ≠ 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nosgnn0 27622 | . . 3 ⊢ ¬ ∅ ∈ {1o, 2o} | |
| 2 | nosgnn0i.1 | . . . 4 ⊢ 𝑋 ∈ {1o, 2o} | |
| 3 | eleq1 2822 | . . . 4 ⊢ (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o})) | |
| 4 | 2, 3 | mpbiri 258 | . . 3 ⊢ (∅ = 𝑋 → ∅ ∈ {1o, 2o}) |
| 5 | 1, 4 | mto 197 | . 2 ⊢ ¬ ∅ = 𝑋 |
| 6 | 5 | neir 2935 | 1 ⊢ ∅ ≠ 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 {cpr 4603 1oc1o 8473 2oc2o 8474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-pr 4604 df-suc 6358 df-1o 8480 df-2o 8481 |
| This theorem is referenced by: sltres 27626 noextenddif 27632 nolesgn2ores 27636 nosepnelem 27643 nosepdmlem 27647 nolt02o 27659 nosupbnd1lem3 27674 nosupbnd1lem5 27676 nosupbnd2lem1 27679 |
| Copyright terms: Public domain | W3C validator |