![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nosgnn0i | Structured version Visualization version GIF version |
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
Ref | Expression |
---|---|
nosgnn0i.1 | ⊢ 𝑋 ∈ {1o, 2o} |
Ref | Expression |
---|---|
nosgnn0i | ⊢ ∅ ≠ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 27685 | . . 3 ⊢ ¬ ∅ ∈ {1o, 2o} | |
2 | nosgnn0i.1 | . . . 4 ⊢ 𝑋 ∈ {1o, 2o} | |
3 | eleq1 2814 | . . . 4 ⊢ (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o})) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ (∅ = 𝑋 → ∅ ∈ {1o, 2o}) |
5 | 1, 4 | mto 196 | . 2 ⊢ ¬ ∅ = 𝑋 |
6 | 5 | neir 2933 | 1 ⊢ ∅ ≠ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∅c0 4322 {cpr 4625 1oc1o 8481 2oc2o 8482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-nul 5303 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-v 3464 df-dif 3949 df-un 3951 df-nul 4323 df-sn 4624 df-pr 4626 df-suc 6374 df-1o 8488 df-2o 8489 |
This theorem is referenced by: sltres 27689 noextenddif 27695 nolesgn2ores 27699 nosepnelem 27706 nosepdmlem 27710 nolt02o 27722 nosupbnd1lem3 27737 nosupbnd1lem5 27739 nosupbnd2lem1 27742 |
Copyright terms: Public domain | W3C validator |