Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nosgnn0i | Structured version Visualization version GIF version |
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.) |
Ref | Expression |
---|---|
nosgnn0i.1 | ⊢ 𝑋 ∈ {1o, 2o} |
Ref | Expression |
---|---|
nosgnn0i | ⊢ ∅ ≠ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nosgnn0 33788 | . . 3 ⊢ ¬ ∅ ∈ {1o, 2o} | |
2 | nosgnn0i.1 | . . . 4 ⊢ 𝑋 ∈ {1o, 2o} | |
3 | eleq1 2826 | . . . 4 ⊢ (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o})) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ (∅ = 𝑋 → ∅ ∈ {1o, 2o}) |
5 | 1, 4 | mto 196 | . 2 ⊢ ¬ ∅ = 𝑋 |
6 | 5 | neir 2945 | 1 ⊢ ∅ ≠ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 {cpr 4560 1oc1o 8260 2oc2o 8261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-suc 6257 df-1o 8267 df-2o 8268 |
This theorem is referenced by: sltres 33792 noextenddif 33798 nolesgn2ores 33802 nosepnelem 33809 nosepdmlem 33813 nolt02o 33825 nosupbnd1lem3 33840 nosupbnd1lem5 33842 nosupbnd2lem1 33845 |
Copyright terms: Public domain | W3C validator |