MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nosgnn0i Structured version   Visualization version   GIF version

Theorem nosgnn0i 27591
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.)
Hypothesis
Ref Expression
nosgnn0i.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
nosgnn0i ∅ ≠ 𝑋

Proof of Theorem nosgnn0i
StepHypRef Expression
1 nosgnn0 27590 . . 3 ¬ ∅ ∈ {1o, 2o}
2 nosgnn0i.1 . . . 4 𝑋 ∈ {1o, 2o}
3 eleq1 2817 . . . 4 (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o}))
42, 3mpbiri 258 . . 3 (∅ = 𝑋 → ∅ ∈ {1o, 2o})
51, 4mto 197 . 2 ¬ ∅ = 𝑋
65neir 2929 1 ∅ ≠ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  wne 2926  c0 4281  {cpr 4576  1oc1o 8373  2oc2o 8374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3436  df-dif 3903  df-un 3905  df-nul 4282  df-sn 4575  df-pr 4577  df-suc 6308  df-1o 8380  df-2o 8381
This theorem is referenced by:  sltres  27594  noextenddif  27600  nolesgn2ores  27604  nosepnelem  27611  nosepdmlem  27615  nolt02o  27627  nosupbnd1lem3  27642  nosupbnd1lem5  27644  nosupbnd2lem1  27647
  Copyright terms: Public domain W3C validator