Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosgnn0i Structured version   Visualization version   GIF version

Theorem nosgnn0i 33599
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.)
Hypothesis
Ref Expression
nosgnn0i.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
nosgnn0i ∅ ≠ 𝑋

Proof of Theorem nosgnn0i
StepHypRef Expression
1 nosgnn0 33598 . . 3 ¬ ∅ ∈ {1o, 2o}
2 nosgnn0i.1 . . . 4 𝑋 ∈ {1o, 2o}
3 eleq1 2825 . . . 4 (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o}))
42, 3mpbiri 261 . . 3 (∅ = 𝑋 → ∅ ∈ {1o, 2o})
51, 4mto 200 . 2 ¬ ∅ = 𝑋
65neir 2943 1 ∅ ≠ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  wne 2940  c0 4237  {cpr 4543  1oc1o 8195  2oc2o 8196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-nul 5199
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-sn 4542  df-pr 4544  df-suc 6219  df-1o 8202  df-2o 8203
This theorem is referenced by:  sltres  33602  noextenddif  33608  nolesgn2ores  33612  nosepnelem  33619  nosepdmlem  33623  nolt02o  33635  nosupbnd1lem3  33650  nosupbnd1lem5  33652  nosupbnd2lem1  33655
  Copyright terms: Public domain W3C validator