Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nosgnn0i Structured version   Visualization version   GIF version

Theorem nosgnn0i 33862
Description: If 𝑋 is a surreal sign, then it is not null. (Contributed by Scott Fenton, 3-Aug-2011.)
Hypothesis
Ref Expression
nosgnn0i.1 𝑋 ∈ {1o, 2o}
Assertion
Ref Expression
nosgnn0i ∅ ≠ 𝑋

Proof of Theorem nosgnn0i
StepHypRef Expression
1 nosgnn0 33861 . . 3 ¬ ∅ ∈ {1o, 2o}
2 nosgnn0i.1 . . . 4 𝑋 ∈ {1o, 2o}
3 eleq1 2826 . . . 4 (∅ = 𝑋 → (∅ ∈ {1o, 2o} ↔ 𝑋 ∈ {1o, 2o}))
42, 3mpbiri 257 . . 3 (∅ = 𝑋 → ∅ ∈ {1o, 2o})
51, 4mto 196 . 2 ¬ ∅ = 𝑋
65neir 2946 1 ∅ ≠ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wne 2943  c0 4256  {cpr 4563  1oc1o 8290  2oc2o 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-sn 4562  df-pr 4564  df-suc 6272  df-1o 8297  df-2o 8298
This theorem is referenced by:  sltres  33865  noextenddif  33871  nolesgn2ores  33875  nosepnelem  33882  nosepdmlem  33886  nolt02o  33898  nosupbnd1lem3  33913  nosupbnd1lem5  33915  nosupbnd2lem1  33918
  Copyright terms: Public domain W3C validator