Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelb | Structured version Visualization version GIF version |
Description: A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
Ref | Expression |
---|---|
nelb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . . . 4 ⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) | |
2 | 1 | ralbii 3090 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴) |
3 | ralnex 3163 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
4 | 2, 3 | bitr2i 275 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
5 | risset 3193 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
6 | 4, 5 | xchnxbir 332 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 |
This theorem is referenced by: inpr0 30781 |
Copyright terms: Public domain | W3C validator |