| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelb | Structured version Visualization version GIF version | ||
| Description: A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
| Ref | Expression |
|---|---|
| nelb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2940 | . . . 4 ⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) | |
| 2 | 1 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴) |
| 3 | ralnex 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
| 4 | 2, 3 | bitr2i 276 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
| 5 | risset 3232 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
| 6 | 4, 5 | xchnxbir 333 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: dfdif3 4116 inpr0 32551 |
| Copyright terms: Public domain | W3C validator |