Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelb | Structured version Visualization version GIF version |
Description: A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) |
Ref | Expression |
---|---|
nelb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2953 | . . . . 5 ⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) | |
2 | 1 | ralbii 3098 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴) |
3 | ralnex 3164 | . . . 4 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
4 | 2, 3 | bitri 278 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
5 | risset 3192 | . . 3 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
6 | 4, 5 | xchbinxr 339 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ¬ 𝐴 ∈ 𝐵) |
7 | 6 | bicomi 227 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∀wral 3071 ∃wrex 3072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-clel 2831 df-ne 2953 df-ral 3076 df-rex 3077 |
This theorem is referenced by: inpr0 30395 |
Copyright terms: Public domain | W3C validator |