Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelb | Structured version Visualization version GIF version |
Description: A definition of ¬ 𝐴 ∈ 𝐵. (Contributed by Thierry Arnoux, 20-Nov-2023.) (Proof shortened by SN, 23-Jan-2024.) (Proof shortened by Wolf Lammen, 3-Nov-2024.) |
Ref | Expression |
---|---|
nelb | ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . . . 4 ⊢ (𝑥 ≠ 𝐴 ↔ ¬ 𝑥 = 𝐴) | |
2 | 1 | ralbii 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴 ↔ ∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴) |
3 | ralnex 3167 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 ¬ 𝑥 = 𝐴 ↔ ¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
4 | 2, 3 | bitr2i 275 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
5 | risset 3194 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) | |
6 | 4, 5 | xchnxbir 333 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝑥 ≠ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 |
This theorem is referenced by: inpr0 30880 |
Copyright terms: Public domain | W3C validator |