![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version |
Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1860 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | df-rex 3077 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
3 | dfclel 2820 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clel 2819 df-rex 3077 |
This theorem is referenced by: nelb 3240 nelbOLD 3241 ceqsralv 3531 clel5 3678 reueq 3759 reuind 3775 0el 4386 iunidOLD 5084 reusv3 5423 elidinxp 6073 sucel 6469 fvmptt 7049 releldm2 8084 qsid 8841 ttrcltr 9785 zorng 10573 rereccl 12012 nndiv 12339 incexc2 15886 ruclem12 16289 conjnmzb 19293 pgpfac1lem2 20119 pgpfac1lem4 20122 mat1dimelbas 22498 mat1dimbas 22499 chmaidscmat 22875 unisngl 23556 fmid 23989 dcubic 26907 addsrid 28015 addsprop 28027 negsprop 28085 mulsrid 28157 mulsprop 28174 fusgrn0degnn0 29535 chscllem2 31670 disjunsn 32616 grplsm0l 33396 ballotlemsima 34480 dfon2lem8 35754 brimg 35901 dfrecs2 35914 altopelaltxp 35940 prtlem9 38820 prter2 38837 2llnmat 39481 2lnat 39741 cdlemefrs29bpre1 40354 elnn0rabdioph 42759 fiphp3d 42775 minregex 43496 |
Copyright terms: Public domain | W3C validator |