| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version | ||
| Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | df-rex 3062 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
| 3 | dfclel 2811 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2810 df-rex 3062 |
| This theorem is referenced by: nelb 3222 ceqsralv 3506 clel5 3649 reueq 3725 reuind 3741 0el 4343 iunidOLD 5042 reusv3 5380 elidinxp 6036 sucel 6433 fvmptt 7011 releldm2 8047 qsid 8802 ttrcltr 9735 zorng 10523 rereccl 11964 nndiv 12291 incexc2 15859 ruclem12 16264 conjnmzb 19241 pgpfac1lem2 20063 pgpfac1lem4 20066 mat1dimelbas 22414 mat1dimbas 22415 chmaidscmat 22791 unisngl 23470 fmid 23903 dcubic 26813 addsrid 27928 addsprop 27940 negsprop 27998 mulsrid 28073 mulsprop 28090 onsfi 28304 fusgrn0degnn0 29484 chscllem2 31624 disjunsn 32580 grplsm0l 33423 ballotlemsima 34553 dfon2lem8 35813 brimg 35960 dfrecs2 35973 altopelaltxp 35999 prtlem9 38887 prter2 38904 2llnmat 39548 2lnat 39808 cdlemefrs29bpre1 40421 elnn0rabdioph 42801 fiphp3d 42817 minregex 43533 |
| Copyright terms: Public domain | W3C validator |