| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version | ||
| Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1862 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
| 3 | dfclel 2809 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2808 df-rex 3058 |
| This theorem is referenced by: nelb 3209 ceqsralv 3478 clel5 3616 reueq 3692 reuind 3708 0el 4312 reusv3 5347 elidinxp 6000 sucel 6390 fvmptt 6958 releldm2 7984 qsid 8714 ttrcltr 9617 zorng 10406 rereccl 11850 nndiv 12182 incexc2 15752 ruclem12 16157 chnfi 18548 conjnmzb 19173 pgpfac1lem2 19997 pgpfac1lem4 20000 mat1dimelbas 22406 mat1dimbas 22407 chmaidscmat 22783 unisngl 23462 fmid 23895 dcubic 26803 addsrid 27927 addsprop 27939 negsprop 27997 mulsrid 28072 mulsprop 28089 onsfi 28303 fusgrn0degnn0 29499 chscllem2 31639 disjunsn 32595 grplsm0l 33412 ballotlemsima 34601 dfon2lem8 35904 brimg 36051 dfrecs2 36066 altopelaltxp 36092 prtlem9 39036 prter2 39053 2llnmat 39696 2lnat 39956 cdlemefrs29bpre1 40569 elnn0rabdioph 42960 fiphp3d 42976 minregex 43691 |
| Copyright terms: Public domain | W3C validator |