Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version |
Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1864 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
3 | dfclel 2817 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-clel 2816 df-rex 3070 |
This theorem is referenced by: nelb 3195 nelbOLD 3196 ceqsralv 3469 clel5 3596 reueq 3672 reuind 3688 0el 4294 iunid 4990 reusv3 5328 elidinxp 5951 sucel 6339 fvmptt 6895 releldm2 7884 qsid 8572 ttrcltr 9474 zorng 10260 rereccl 11693 nndiv 12019 incexc2 15550 ruclem12 15950 conjnmzb 18869 pgpfac1lem2 19678 pgpfac1lem4 19681 mat1dimelbas 21620 mat1dimbas 21621 chmaidscmat 21997 unisngl 22678 fmid 23111 dcubic 25996 fusgrn0degnn0 27866 chscllem2 30000 disjunsn 30933 grplsm0l 31591 ballotlemsima 32482 dfon2lem8 33766 addsid1 34127 brimg 34239 dfrecs2 34252 altopelaltxp 34278 prtlem9 36878 prter2 36895 2llnmat 37538 2lnat 37798 cdlemefrs29bpre1 38411 elnn0rabdioph 40625 fiphp3d 40641 minregex 41141 |
Copyright terms: Public domain | W3C validator |