| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version | ||
| Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
| 3 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: nelb 3211 ceqsralv 3485 clel5 3628 reueq 3705 reuind 3721 0el 4322 iunidOLD 5020 reusv3 5355 elidinxp 6004 sucel 6396 fvmptt 6970 releldm2 8001 qsid 8731 ttrcltr 9645 zorng 10433 rereccl 11876 nndiv 12208 incexc2 15780 ruclem12 16185 conjnmzb 19161 pgpfac1lem2 19983 pgpfac1lem4 19986 mat1dimelbas 22334 mat1dimbas 22335 chmaidscmat 22711 unisngl 23390 fmid 23823 dcubic 26732 addsrid 27847 addsprop 27859 negsprop 27917 mulsrid 27992 mulsprop 28009 onsfi 28223 fusgrn0degnn0 29403 chscllem2 31540 disjunsn 32496 grplsm0l 33347 ballotlemsima 34480 dfon2lem8 35751 brimg 35898 dfrecs2 35911 altopelaltxp 35937 prtlem9 38830 prter2 38847 2llnmat 39491 2lnat 39751 cdlemefrs29bpre1 40364 elnn0rabdioph 42764 fiphp3d 42780 minregex 43496 |
| Copyright terms: Public domain | W3C validator |