| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version | ||
| Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1862 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
| 3 | dfclel 2807 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clel 2806 df-rex 3057 |
| This theorem is referenced by: nelb 3208 ceqsralv 3477 clel5 3615 reueq 3691 reuind 3707 0el 4308 reusv3 5338 elidinxp 5988 sucel 6377 fvmptt 6944 releldm2 7970 qsid 8700 ttrcltr 9601 zorng 10390 rereccl 11834 nndiv 12166 incexc2 15740 ruclem12 16145 chnfi 18535 conjnmzb 19160 pgpfac1lem2 19984 pgpfac1lem4 19987 mat1dimelbas 22381 mat1dimbas 22382 chmaidscmat 22758 unisngl 23437 fmid 23870 dcubic 26778 addsrid 27902 addsprop 27914 negsprop 27972 mulsrid 28047 mulsprop 28064 onsfi 28278 fusgrn0degnn0 29473 chscllem2 31610 disjunsn 32566 grplsm0l 33360 ballotlemsima 34521 dfon2lem8 35824 brimg 35971 dfrecs2 35984 altopelaltxp 36010 prtlem9 38903 prter2 38920 2llnmat 39563 2lnat 39823 cdlemefrs29bpre1 40436 elnn0rabdioph 42836 fiphp3d 42852 minregex 43567 |
| Copyright terms: Public domain | W3C validator |