Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version |
Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1868 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | df-rex 3059 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
3 | dfclel 2812 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | 3bitr4ri 307 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2114 ∃wrex 3054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1787 df-clel 2811 df-rex 3059 |
This theorem is referenced by: nelb 3178 ceqsralv 3435 clel5 3563 reueq 3636 reuind 3652 0el 4249 iunid 4946 reusv3 5272 elidinxp 5885 sucel 6245 fvmptt 6795 releldm2 7767 qsid 8394 zorng 10004 rereccl 11436 nndiv 11762 incexc2 15286 ruclem12 15686 conjnmzb 18511 pgpfac1lem2 19316 pgpfac1lem4 19319 mat1dimelbas 21222 mat1dimbas 21223 chmaidscmat 21599 unisngl 22278 fmid 22711 dcubic 25584 fusgrn0degnn0 27441 chscllem2 29573 disjunsn 30507 grplsm0l 31163 ballotlemsima 32052 dfon2lem8 33338 addsid1 33765 brimg 33877 dfrecs2 33890 altopelaltxp 33916 prtlem9 36501 prter2 36518 2llnmat 37161 2lnat 37421 cdlemefrs29bpre1 38034 elnn0rabdioph 40197 fiphp3d 40213 |
Copyright terms: Public domain | W3C validator |