| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version | ||
| Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
| 3 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: nelb 3205 ceqsralv 3479 clel5 3622 reueq 3699 reuind 3715 0el 4316 iunidOLD 5013 reusv3 5347 elidinxp 5999 sucel 6387 fvmptt 6954 releldm2 7985 qsid 8715 ttrcltr 9631 zorng 10417 rereccl 11860 nndiv 12192 incexc2 15763 ruclem12 16168 conjnmzb 19150 pgpfac1lem2 19974 pgpfac1lem4 19977 mat1dimelbas 22374 mat1dimbas 22375 chmaidscmat 22751 unisngl 23430 fmid 23863 dcubic 26772 addsrid 27894 addsprop 27906 negsprop 27964 mulsrid 28039 mulsprop 28056 onsfi 28270 fusgrn0degnn0 29463 chscllem2 31600 disjunsn 32556 grplsm0l 33353 ballotlemsima 34486 dfon2lem8 35766 brimg 35913 dfrecs2 35926 altopelaltxp 35952 prtlem9 38845 prter2 38862 2llnmat 39506 2lnat 39766 cdlemefrs29bpre1 40379 elnn0rabdioph 42779 fiphp3d 42795 minregex 43510 |
| Copyright terms: Public domain | W3C validator |