Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version |
Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1865 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
3 | dfclel 2818 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
4 | 1, 2, 3 | 3bitr4ri 303 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clel 2817 df-rex 3069 |
This theorem is referenced by: nelb 3194 nelbOLD 3195 ceqsralv 3459 clel5 3589 reueq 3667 reuind 3683 0el 4291 iunid 4986 reusv3 5323 elidinxp 5940 sucel 6324 fvmptt 6877 releldm2 7857 qsid 8530 zorng 10191 rereccl 11623 nndiv 11949 incexc2 15478 ruclem12 15878 conjnmzb 18784 pgpfac1lem2 19593 pgpfac1lem4 19596 mat1dimelbas 21528 mat1dimbas 21529 chmaidscmat 21905 unisngl 22586 fmid 23019 dcubic 25901 fusgrn0degnn0 27769 chscllem2 29901 disjunsn 30834 grplsm0l 31493 ballotlemsima 32382 dfon2lem8 33672 ttrcltr 33702 addsid1 34054 brimg 34166 dfrecs2 34179 altopelaltxp 34205 prtlem9 36805 prter2 36822 2llnmat 37465 2lnat 37725 cdlemefrs29bpre1 38338 elnn0rabdioph 40541 fiphp3d 40557 |
Copyright terms: Public domain | W3C validator |