| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > risset | Structured version Visualization version GIF version | ||
| Description: Two ways to say "𝐴 belongs to 𝐵". (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| risset | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 2 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝑥 = 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴)) | |
| 3 | dfclel 2804 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 4 | 1, 2, 3 | 3bitr4ri 304 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝑥 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2803 df-rex 3054 |
| This theorem is referenced by: nelb 3213 ceqsralv 3488 clel5 3631 reueq 3708 reuind 3724 0el 4326 iunidOLD 5025 reusv3 5360 elidinxp 6015 sucel 6408 fvmptt 6988 releldm2 8022 qsid 8754 ttrcltr 9669 zorng 10457 rereccl 11900 nndiv 12232 incexc2 15804 ruclem12 16209 conjnmzb 19185 pgpfac1lem2 20007 pgpfac1lem4 20010 mat1dimelbas 22358 mat1dimbas 22359 chmaidscmat 22735 unisngl 23414 fmid 23847 dcubic 26756 addsrid 27871 addsprop 27883 negsprop 27941 mulsrid 28016 mulsprop 28033 onsfi 28247 fusgrn0degnn0 29427 chscllem2 31567 disjunsn 32523 grplsm0l 33374 ballotlemsima 34507 dfon2lem8 35778 brimg 35925 dfrecs2 35938 altopelaltxp 35964 prtlem9 38857 prter2 38874 2llnmat 39518 2lnat 39778 cdlemefrs29bpre1 40391 elnn0rabdioph 42791 fiphp3d 42807 minregex 43523 |
| Copyright terms: Public domain | W3C validator |