Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neneor | Structured version Visualization version GIF version |
Description: If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
Ref | Expression |
---|---|
neneor | ⊢ (𝐴 ≠ 𝐵 → (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr3 2764 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
2 | 1 | necon3ai 2968 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
3 | neorian 3039 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝐴 ≠ 𝐵 → (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-cleq 2730 df-ne 2944 |
This theorem is referenced by: wemapso2lem 9311 trgcopyeulem 27166 |
Copyright terms: Public domain | W3C validator |