| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neneor | Structured version Visualization version GIF version | ||
| Description: If two classes are different, a third class must be different of at least one of them. (Contributed by Thierry Arnoux, 8-Aug-2020.) |
| Ref | Expression |
|---|---|
| neneor | ⊢ (𝐴 ≠ 𝐵 → (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr3 2758 | . . 3 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐵) | |
| 2 | 1 | necon3ai 2958 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) |
| 3 | neorian 3028 | . 2 ⊢ ((𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐶 ∧ 𝐵 = 𝐶)) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → (𝐴 ≠ 𝐶 ∨ 𝐵 ≠ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-cleq 2728 df-ne 2934 |
| This theorem is referenced by: wemapso2lem 9571 trgcopyeulem 28789 |
| Copyright terms: Public domain | W3C validator |