MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelelne Structured version   Visualization version   GIF version

Theorem nelelne 3112
Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.)
Assertion
Ref Expression
nelelne 𝐴𝐵 → (𝐶𝐵𝐶𝐴))

Proof of Theorem nelelne
StepHypRef Expression
1 nelne2 3111 . 2 ((𝐶𝐵 ∧ ¬ 𝐴𝐵) → 𝐶𝐴)
21expcom 417 1 𝐴𝐵 → (𝐶𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2115  wne 3014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-cleq 2817  df-clel 2896  df-ne 3015
This theorem is referenced by:  difsn  4715  elneq  9059  frgrncvvdeqlem7  28093  frgrncvvdeqlem9  28095  prter2  36122
  Copyright terms: Public domain W3C validator