MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelelne Structured version   Visualization version   GIF version

Theorem nelelne 3040
Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.)
Assertion
Ref Expression
nelelne 𝐴𝐵 → (𝐶𝐵𝐶𝐴))

Proof of Theorem nelelne
StepHypRef Expression
1 nelne2 3039 . 2 ((𝐶𝐵 ∧ ¬ 𝐴𝐵) → 𝐶𝐴)
21expcom 413 1 𝐴𝐵 → (𝐶𝐵𝐶𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  wne 2939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-cleq 2728  df-clel 2815  df-ne 2940
This theorem is referenced by:  difsn  4797  feldmfvelcdm  7105  resf1extb  7957  elneq  9639  frgrncvvdeqlem7  30325  frgrncvvdeqlem9  30327  prter2  38883
  Copyright terms: Public domain W3C validator