| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelelne | Structured version Visualization version GIF version | ||
| Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.) |
| Ref | Expression |
|---|---|
| nelelne | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelne2 3026 | . 2 ⊢ ((𝐶 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵) → 𝐶 ≠ 𝐴) | |
| 2 | 1 | expcom 413 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 df-ne 2929 |
| This theorem is referenced by: difsn 4745 feldmfvelcdm 7014 resf1extb 7859 elneq 9481 frgrncvvdeqlem7 30277 frgrncvvdeqlem9 30279 prter2 38920 |
| Copyright terms: Public domain | W3C validator |