Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nelelne | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.) |
Ref | Expression |
---|---|
nelelne | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelne2 3040 | . 2 ⊢ ((𝐶 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵) → 𝐶 ≠ 𝐴) | |
2 | 1 | expcom 415 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-cleq 2729 df-clel 2815 df-ne 2942 |
This theorem is referenced by: difsn 4750 elneq 9460 frgrncvvdeqlem7 28957 frgrncvvdeqlem9 28959 prter2 37197 |
Copyright terms: Public domain | W3C validator |