![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelelne | Structured version Visualization version GIF version |
Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.) |
Ref | Expression |
---|---|
nelelne | ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelne2 3046 | . 2 ⊢ ((𝐶 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐵) → 𝐶 ≠ 𝐴) | |
2 | 1 | expcom 413 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 df-ne 2947 |
This theorem is referenced by: difsn 4823 feldmfvelcdm 7120 elneq 9667 frgrncvvdeqlem7 30337 frgrncvvdeqlem9 30339 prter2 38837 |
Copyright terms: Public domain | W3C validator |