MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2lem Structured version   Visualization version   GIF version

Theorem wemapso2lem 9013
Description: Lemma for wemapso2 9014. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2lem (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑊(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2lem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemapso.t . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . 3 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
32ssrab3 4043 . 2 𝑈 ⊆ (𝐵m 𝐴)
4 elex 3498 . . . 4 (𝐴𝑉𝐴 ∈ V)
543ad2ant1 1130 . . 3 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝐴 ∈ V)
65adantr 484 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝐴 ∈ V)
7 simpl2 1189 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑅 Or 𝐴)
8 simpl3 1190 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑆 Or 𝐵)
9 simprll 778 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎𝑈)
10 breq1 5055 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 finSupp 𝑍𝑎 finSupp 𝑍))
1110, 2elrab2 3669 . . . . . . 7 (𝑎𝑈 ↔ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑎 finSupp 𝑍))
1211simprbi 500 . . . . . 6 (𝑎𝑈𝑎 finSupp 𝑍)
139, 12syl 17 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 finSupp 𝑍)
14 simprlr 779 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏𝑈)
15 breq1 5055 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 finSupp 𝑍𝑏 finSupp 𝑍))
1615, 2elrab2 3669 . . . . . . 7 (𝑏𝑈 ↔ (𝑏 ∈ (𝐵m 𝐴) ∧ 𝑏 finSupp 𝑍))
1716simprbi 500 . . . . . 6 (𝑏𝑈𝑏 finSupp 𝑍)
1814, 17syl 17 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 finSupp 𝑍)
1913, 18fsuppunfi 8850 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∈ Fin)
203, 9sseldi 3951 . . . . . . . 8 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵m 𝐴))
21 elmapi 8424 . . . . . . . 8 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
2220, 21syl 17 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
2322ffnd 6504 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
243, 14sseldi 3951 . . . . . . . 8 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵m 𝐴))
25 elmapi 8424 . . . . . . . 8 (𝑏 ∈ (𝐵m 𝐴) → 𝑏:𝐴𝐵)
2624, 25syl 17 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
2726ffnd 6504 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
28 fndmdif 6803 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → dom (𝑎𝑏) = {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)})
2923, 27, 28syl2anc 587 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) = {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)})
30 neneor 3113 . . . . . . . 8 ((𝑎𝑐) ≠ (𝑏𝑐) → ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍))
31 elun 4111 . . . . . . . . 9 (𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ (𝑐 ∈ (𝑎 supp 𝑍) ∨ 𝑐 ∈ (𝑏 supp 𝑍)))
32 simpr 488 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑐𝐴)
3323adantr 484 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑎 Fn 𝐴)
346ad2antrr 725 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝐴 ∈ V)
35 simpr 488 . . . . . . . . . . . . 13 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑍𝑊)
3635ad2antrr 725 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑍𝑊)
37 elsuppfn 7834 . . . . . . . . . . . 12 ((𝑎 Fn 𝐴𝐴 ∈ V ∧ 𝑍𝑊) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑎𝑐) ≠ 𝑍)))
3833, 34, 36, 37syl3anc 1368 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑎𝑐) ≠ 𝑍)))
3932, 38mpbirand 706 . . . . . . . . . 10 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑎𝑐) ≠ 𝑍))
4027adantr 484 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑏 Fn 𝐴)
41 simpll1 1209 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝐴𝑉)
4241adantr 484 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝐴𝑉)
43 elsuppfn 7834 . . . . . . . . . . . 12 ((𝑏 Fn 𝐴𝐴𝑉𝑍𝑊) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑏𝑐) ≠ 𝑍)))
4440, 42, 36, 43syl3anc 1368 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑏𝑐) ≠ 𝑍)))
4532, 44mpbirand 706 . . . . . . . . . 10 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑏𝑐) ≠ 𝑍))
4639, 45orbi12d 916 . . . . . . . . 9 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → ((𝑐 ∈ (𝑎 supp 𝑍) ∨ 𝑐 ∈ (𝑏 supp 𝑍)) ↔ ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍)))
4731, 46syl5bb 286 . . . . . . . 8 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍)))
4830, 47syl5ibr 249 . . . . . . 7 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
4948ralrimiva 3177 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∀𝑐𝐴 ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
50 rabss 4034 . . . . . 6 ({𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)} ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ ∀𝑐𝐴 ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
5149, 50sylibr 237 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)} ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
5229, 51eqsstrd 3991 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
5319, 52ssfid 8738 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ Fin)
54 suppssdm 7839 . . . . . . . 8 (𝑎 supp 𝑍) ⊆ dom 𝑎
5554, 22fssdm 6520 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑎 supp 𝑍) ⊆ 𝐴)
56 suppssdm 7839 . . . . . . . 8 (𝑏 supp 𝑍) ⊆ dom 𝑏
5756, 26fssdm 6520 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑏 supp 𝑍) ⊆ 𝐴)
5855, 57unssd 4148 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ⊆ 𝐴)
597adantr 484 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Or 𝐴)
60 soss 5480 . . . . . 6 (((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ⊆ 𝐴 → (𝑅 Or 𝐴𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
6158, 59, 60sylc 65 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
62 wofi 8764 . . . . 5 ((𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∧ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∈ Fin) → 𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
6361, 19, 62syl2anc 587 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
64 wefr 5532 . . . 4 (𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) → 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
6563, 64syl 17 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
66 simprr 772 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎𝑏)
67 fndmdifeq0 6805 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
6823, 27, 67syl2anc 587 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
6968necon3bid 3058 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
7066, 69mpbird 260 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
71 fri 5504 . . 3 (((dom (𝑎𝑏) ∈ Fin ∧ 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))) ∧ (dom (𝑎𝑏) ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
7253, 65, 52, 70, 71syl22anc 837 . 2 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
731, 3, 6, 7, 8, 72wemapsolem 9011 1 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑇 Or 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  Vcvv 3480  cdif 3916  cun 3917  wss 3919  c0 4276   class class class wbr 5052  {copab 5114   Or wor 5460   Fr wfr 5498   We wwe 5500  dom cdm 5542   Fn wfn 6338  wf 6339  cfv 6343  (class class class)co 7149   supp csupp 7826  m cmap 8402  Fincfn 8505   finSupp cfsupp 8830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-fin 8509  df-fsupp 8831
This theorem is referenced by:  wemapso2  9014
  Copyright terms: Public domain W3C validator