MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2lem Structured version   Visualization version   GIF version

Theorem wemapso2lem 9590
Description: Lemma for wemapso2 9591. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2lem (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑊(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2lem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemapso.t . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . 3 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
32ssrab3 4092 . 2 𝑈 ⊆ (𝐵m 𝐴)
4 simpl2 1191 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑅 Or 𝐴)
5 simpl3 1192 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑆 Or 𝐵)
6 simprll 779 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎𝑈)
7 breq1 5151 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 finSupp 𝑍𝑎 finSupp 𝑍))
87, 2elrab2 3698 . . . . . . 7 (𝑎𝑈 ↔ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑎 finSupp 𝑍))
98simprbi 496 . . . . . 6 (𝑎𝑈𝑎 finSupp 𝑍)
106, 9syl 17 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 finSupp 𝑍)
11 simprlr 780 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏𝑈)
12 breq1 5151 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 finSupp 𝑍𝑏 finSupp 𝑍))
1312, 2elrab2 3698 . . . . . . 7 (𝑏𝑈 ↔ (𝑏 ∈ (𝐵m 𝐴) ∧ 𝑏 finSupp 𝑍))
1413simprbi 496 . . . . . 6 (𝑏𝑈𝑏 finSupp 𝑍)
1511, 14syl 17 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 finSupp 𝑍)
1610, 15fsuppunfi 9426 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∈ Fin)
173, 6sselid 3993 . . . . . . . 8 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵m 𝐴))
18 elmapi 8888 . . . . . . . 8 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
1917, 18syl 17 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
2019ffnd 6738 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
213, 11sselid 3993 . . . . . . . 8 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵m 𝐴))
22 elmapi 8888 . . . . . . . 8 (𝑏 ∈ (𝐵m 𝐴) → 𝑏:𝐴𝐵)
2321, 22syl 17 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
2423ffnd 6738 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
25 fndmdif 7062 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → dom (𝑎𝑏) = {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)})
2620, 24, 25syl2anc 584 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) = {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)})
27 neneor 3040 . . . . . . . 8 ((𝑎𝑐) ≠ (𝑏𝑐) → ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍))
28 elun 4163 . . . . . . . . 9 (𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ (𝑐 ∈ (𝑎 supp 𝑍) ∨ 𝑐 ∈ (𝑏 supp 𝑍)))
29 simpr 484 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑐𝐴)
3020adantr 480 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑎 Fn 𝐴)
31 elex 3499 . . . . . . . . . . . . . . 15 (𝐴𝑉𝐴 ∈ V)
32313ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝐴 ∈ V)
3332adantr 480 . . . . . . . . . . . . 13 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝐴 ∈ V)
3433ad2antrr 726 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝐴 ∈ V)
35 simpr 484 . . . . . . . . . . . . 13 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑍𝑊)
3635ad2antrr 726 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑍𝑊)
37 elsuppfn 8194 . . . . . . . . . . . 12 ((𝑎 Fn 𝐴𝐴 ∈ V ∧ 𝑍𝑊) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑎𝑐) ≠ 𝑍)))
3830, 34, 36, 37syl3anc 1370 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑎𝑐) ≠ 𝑍)))
3929, 38mpbirand 707 . . . . . . . . . 10 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑎𝑐) ≠ 𝑍))
4024adantr 480 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑏 Fn 𝐴)
41 simpll1 1211 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝐴𝑉)
4241adantr 480 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝐴𝑉)
43 elsuppfn 8194 . . . . . . . . . . . 12 ((𝑏 Fn 𝐴𝐴𝑉𝑍𝑊) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑏𝑐) ≠ 𝑍)))
4440, 42, 36, 43syl3anc 1370 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑏𝑐) ≠ 𝑍)))
4529, 44mpbirand 707 . . . . . . . . . 10 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑏𝑐) ≠ 𝑍))
4639, 45orbi12d 918 . . . . . . . . 9 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → ((𝑐 ∈ (𝑎 supp 𝑍) ∨ 𝑐 ∈ (𝑏 supp 𝑍)) ↔ ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍)))
4728, 46bitrid 283 . . . . . . . 8 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍)))
4827, 47imbitrrid 246 . . . . . . 7 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
4948ralrimiva 3144 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∀𝑐𝐴 ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
50 rabss 4082 . . . . . 6 ({𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)} ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ ∀𝑐𝐴 ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
5149, 50sylibr 234 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)} ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
5226, 51eqsstrd 4034 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
5316, 52ssfid 9299 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ Fin)
54 suppssdm 8201 . . . . . . . 8 (𝑎 supp 𝑍) ⊆ dom 𝑎
5554, 19fssdm 6756 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑎 supp 𝑍) ⊆ 𝐴)
56 suppssdm 8201 . . . . . . . 8 (𝑏 supp 𝑍) ⊆ dom 𝑏
5756, 23fssdm 6756 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑏 supp 𝑍) ⊆ 𝐴)
5855, 57unssd 4202 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ⊆ 𝐴)
594adantr 480 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Or 𝐴)
60 soss 5617 . . . . . 6 (((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ⊆ 𝐴 → (𝑅 Or 𝐴𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
6158, 59, 60sylc 65 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
62 wofi 9323 . . . . 5 ((𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∧ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∈ Fin) → 𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
6361, 16, 62syl2anc 584 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
64 wefr 5679 . . . 4 (𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) → 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
6563, 64syl 17 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
66 simprr 773 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎𝑏)
67 fndmdifeq0 7064 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
6820, 24, 67syl2anc 584 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
6968necon3bid 2983 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
7066, 69mpbird 257 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
71 fri 5646 . . 3 (((dom (𝑎𝑏) ∈ Fin ∧ 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))) ∧ (dom (𝑎𝑏) ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
7253, 65, 52, 70, 71syl22anc 839 . 2 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
731, 3, 4, 5, 72wemapsolem 9588 1 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑇 Or 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  cdif 3960  cun 3961  wss 3963  c0 4339   class class class wbr 5148  {copab 5210   Or wor 5596   Fr wfr 5638   We wwe 5640  dom cdm 5689   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431   supp csupp 8184  m cmap 8865  Fincfn 8984   finSupp cfsupp 9399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-1o 8505  df-map 8867  df-en 8985  df-fin 8988  df-fsupp 9400
This theorem is referenced by:  wemapso2  9591
  Copyright terms: Public domain W3C validator