MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemapso2lem Structured version   Visualization version   GIF version

Theorem wemapso2lem 9000
Description: Lemma for wemapso2 9001. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.)
Hypotheses
Ref Expression
wemapso.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
wemapso2.u 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
Assertion
Ref Expression
wemapso2lem (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑇 Or 𝑈)
Distinct variable groups:   𝑥,𝐵   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝑅,𝑥,𝑦,𝑧   𝑤,𝑆,𝑥,𝑦,𝑧   𝑥,𝑍
Allowed substitution hints:   𝐵(𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑈(𝑥,𝑦,𝑧,𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤)   𝑊(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑦,𝑧,𝑤)

Proof of Theorem wemapso2lem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemapso.t . 2 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐴 ((𝑥𝑧)𝑆(𝑦𝑧) ∧ ∀𝑤𝐴 (𝑤𝑅𝑧 → (𝑥𝑤) = (𝑦𝑤)))}
2 wemapso2.u . . 3 𝑈 = {𝑥 ∈ (𝐵m 𝐴) ∣ 𝑥 finSupp 𝑍}
32ssrab3 4008 . 2 𝑈 ⊆ (𝐵m 𝐴)
4 elex 3459 . . . 4 (𝐴𝑉𝐴 ∈ V)
543ad2ant1 1130 . . 3 ((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) → 𝐴 ∈ V)
65adantr 484 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝐴 ∈ V)
7 simpl2 1189 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑅 Or 𝐴)
8 simpl3 1190 . 2 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑆 Or 𝐵)
9 simprll 778 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎𝑈)
10 breq1 5033 . . . . . . . 8 (𝑥 = 𝑎 → (𝑥 finSupp 𝑍𝑎 finSupp 𝑍))
1110, 2elrab2 3631 . . . . . . 7 (𝑎𝑈 ↔ (𝑎 ∈ (𝐵m 𝐴) ∧ 𝑎 finSupp 𝑍))
1211simprbi 500 . . . . . 6 (𝑎𝑈𝑎 finSupp 𝑍)
139, 12syl 17 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 finSupp 𝑍)
14 simprlr 779 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏𝑈)
15 breq1 5033 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 finSupp 𝑍𝑏 finSupp 𝑍))
1615, 2elrab2 3631 . . . . . . 7 (𝑏𝑈 ↔ (𝑏 ∈ (𝐵m 𝐴) ∧ 𝑏 finSupp 𝑍))
1716simprbi 500 . . . . . 6 (𝑏𝑈𝑏 finSupp 𝑍)
1814, 17syl 17 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 finSupp 𝑍)
1913, 18fsuppunfi 8837 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∈ Fin)
203, 9sseldi 3913 . . . . . . . 8 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 ∈ (𝐵m 𝐴))
21 elmapi 8411 . . . . . . . 8 (𝑎 ∈ (𝐵m 𝐴) → 𝑎:𝐴𝐵)
2220, 21syl 17 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎:𝐴𝐵)
2322ffnd 6488 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎 Fn 𝐴)
243, 14sseldi 3913 . . . . . . . 8 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 ∈ (𝐵m 𝐴))
25 elmapi 8411 . . . . . . . 8 (𝑏 ∈ (𝐵m 𝐴) → 𝑏:𝐴𝐵)
2624, 25syl 17 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏:𝐴𝐵)
2726ffnd 6488 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑏 Fn 𝐴)
28 fndmdif 6789 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → dom (𝑎𝑏) = {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)})
2923, 27, 28syl2anc 587 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) = {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)})
30 neneor 3086 . . . . . . . 8 ((𝑎𝑐) ≠ (𝑏𝑐) → ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍))
31 elun 4076 . . . . . . . . 9 (𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ (𝑐 ∈ (𝑎 supp 𝑍) ∨ 𝑐 ∈ (𝑏 supp 𝑍)))
32 simpr 488 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑐𝐴)
3323adantr 484 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑎 Fn 𝐴)
346ad2antrr 725 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝐴 ∈ V)
35 simpr 488 . . . . . . . . . . . . 13 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑍𝑊)
3635ad2antrr 725 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑍𝑊)
37 elsuppfn 7821 . . . . . . . . . . . 12 ((𝑎 Fn 𝐴𝐴 ∈ V ∧ 𝑍𝑊) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑎𝑐) ≠ 𝑍)))
3833, 34, 36, 37syl3anc 1368 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑎𝑐) ≠ 𝑍)))
3932, 38mpbirand 706 . . . . . . . . . 10 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑎 supp 𝑍) ↔ (𝑎𝑐) ≠ 𝑍))
4027adantr 484 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝑏 Fn 𝐴)
41 simpll1 1209 . . . . . . . . . . . . 13 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝐴𝑉)
4241adantr 484 . . . . . . . . . . . 12 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → 𝐴𝑉)
43 elsuppfn 7821 . . . . . . . . . . . 12 ((𝑏 Fn 𝐴𝐴𝑉𝑍𝑊) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑏𝑐) ≠ 𝑍)))
4440, 42, 36, 43syl3anc 1368 . . . . . . . . . . 11 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑐𝐴 ∧ (𝑏𝑐) ≠ 𝑍)))
4532, 44mpbirand 706 . . . . . . . . . 10 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ (𝑏 supp 𝑍) ↔ (𝑏𝑐) ≠ 𝑍))
4639, 45orbi12d 916 . . . . . . . . 9 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → ((𝑐 ∈ (𝑎 supp 𝑍) ∨ 𝑐 ∈ (𝑏 supp 𝑍)) ↔ ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍)))
4731, 46syl5bb 286 . . . . . . . 8 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → (𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ ((𝑎𝑐) ≠ 𝑍 ∨ (𝑏𝑐) ≠ 𝑍)))
4830, 47syl5ibr 249 . . . . . . 7 (((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) ∧ 𝑐𝐴) → ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
4948ralrimiva 3149 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∀𝑐𝐴 ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
50 rabss 3999 . . . . . 6 ({𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)} ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ↔ ∀𝑐𝐴 ((𝑎𝑐) ≠ (𝑏𝑐) → 𝑐 ∈ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
5149, 50sylibr 237 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → {𝑐𝐴 ∣ (𝑎𝑐) ≠ (𝑏𝑐)} ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
5229, 51eqsstrd 3953 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
5319, 52ssfid 8725 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ∈ Fin)
54 suppssdm 7826 . . . . . . . 8 (𝑎 supp 𝑍) ⊆ dom 𝑎
5554, 22fssdm 6504 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑎 supp 𝑍) ⊆ 𝐴)
56 suppssdm 7826 . . . . . . . 8 (𝑏 supp 𝑍) ⊆ dom 𝑏
5756, 26fssdm 6504 . . . . . . 7 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (𝑏 supp 𝑍) ⊆ 𝐴)
5855, 57unssd 4113 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ⊆ 𝐴)
597adantr 484 . . . . . 6 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Or 𝐴)
60 soss 5457 . . . . . 6 (((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ⊆ 𝐴 → (𝑅 Or 𝐴𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))))
6158, 59, 60sylc 65 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
62 wofi 8751 . . . . 5 ((𝑅 Or ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∧ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∈ Fin) → 𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
6361, 19, 62syl2anc 587 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
64 wefr 5509 . . . 4 (𝑅 We ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) → 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
6563, 64syl 17 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)))
66 simprr 772 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → 𝑎𝑏)
67 fndmdifeq0 6791 . . . . . 6 ((𝑎 Fn 𝐴𝑏 Fn 𝐴) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
6823, 27, 67syl2anc 587 . . . . 5 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) = ∅ ↔ 𝑎 = 𝑏))
6968necon3bid 3031 . . . 4 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → (dom (𝑎𝑏) ≠ ∅ ↔ 𝑎𝑏))
7066, 69mpbird 260 . . 3 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → dom (𝑎𝑏) ≠ ∅)
71 fri 5481 . . 3 (((dom (𝑎𝑏) ∈ Fin ∧ 𝑅 Fr ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍))) ∧ (dom (𝑎𝑏) ⊆ ((𝑎 supp 𝑍) ∪ (𝑏 supp 𝑍)) ∧ dom (𝑎𝑏) ≠ ∅)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
7253, 65, 52, 70, 71syl22anc 837 . 2 ((((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) ∧ ((𝑎𝑈𝑏𝑈) ∧ 𝑎𝑏)) → ∃𝑐 ∈ dom (𝑎𝑏)∀𝑑 ∈ dom (𝑎𝑏) ¬ 𝑑𝑅𝑐)
731, 3, 6, 7, 8, 72wemapsolem 8998 1 (((𝐴𝑉𝑅 Or 𝐴𝑆 Or 𝐵) ∧ 𝑍𝑊) → 𝑇 Or 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  wss 3881  c0 4243   class class class wbr 5030  {copab 5092   Or wor 5437   Fr wfr 5475   We wwe 5477  dom cdm 5519   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135   supp csupp 7813  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-fin 8496  df-fsupp 8818
This theorem is referenced by:  wemapso2  9001
  Copyright terms: Public domain W3C validator