Proof of Theorem trgcopyeulem
Step | Hyp | Ref
| Expression |
1 | | trgcopy.p |
. 2
⊢ 𝑃 = (Base‘𝐺) |
2 | | trgcopy.m |
. 2
⊢ − =
(dist‘𝐺) |
3 | | trgcopy.i |
. 2
⊢ 𝐼 = (Itv‘𝐺) |
4 | | trgcopy.g |
. 2
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | | trgcopy.l |
. . 3
⊢ 𝐿 = (LineG‘𝐺) |
6 | | trgcopy.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
7 | | trgcopy.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
8 | | trgcopy.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
9 | | trgcopy.1 |
. . 3
⊢ (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶)) |
10 | 1, 5, 3, 4, 6, 7, 8, 9 | ncoltgdim2 26926 |
. 2
⊢ (𝜑 → 𝐺DimTarskiG≥2) |
11 | | eqid 2738 |
. 2
⊢
((lInvG‘𝐺)‘(𝐷𝐿𝐸)) = ((lInvG‘𝐺)‘(𝐷𝐿𝐸)) |
12 | | trgcopy.d |
. . 3
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
13 | | trgcopy.e |
. . 3
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
14 | | trgcopy.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
15 | | trgcopy.2 |
. . . 4
⊢ (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹)) |
16 | 1, 3, 5, 4, 12, 13, 14, 15 | ncolne1 26986 |
. . 3
⊢ (𝜑 → 𝐷 ≠ 𝐸) |
17 | 1, 3, 5, 4, 12, 13, 16 | tgelrnln 26991 |
. 2
⊢ (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿) |
18 | | trgcopyeulem.x |
. 2
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
19 | | trgcopyeulem.y |
. 2
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
20 | | eqid 2738 |
. . . . . . . . 9
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
21 | 4 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺 ∈ TarskiG) |
22 | 17 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸) ∈ ran 𝐿) |
23 | | simplr 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐷𝐿𝐸)) |
24 | 1, 5, 3, 21, 22, 23 | tglnpt 26910 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ 𝑃) |
25 | | eqid 2738 |
. . . . . . . . 9
⊢
((pInvG‘𝐺)‘𝑡) = ((pInvG‘𝐺)‘𝑡) |
26 | 1, 2, 3, 4, 10, 11, 5, 17, 19 | lmicl 27147 |
. . . . . . . . . 10
⊢ (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃) |
27 | 26 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃) |
28 | 18 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ∈ 𝑃) |
29 | 12 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷 ∈ 𝑃) |
30 | 13 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸 ∈ 𝑃) |
31 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
32 | 16 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷 ≠ 𝐸) |
33 | 32 | necomd 2999 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸 ≠ 𝐷) |
34 | 1, 3, 5, 21, 30, 29, 24, 33, 23 | lncom 26983 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐸𝐿𝐷)) |
35 | 34 | orcd 870 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷)) |
36 | 1, 5, 3, 21, 30, 29, 24, 35 | colrot1 26920 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 ∈ (𝐷𝐿𝑡) ∨ 𝐷 = 𝑡)) |
37 | | trgcopyeulem.1 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑋”〉) |
38 | 1, 2, 3, 31, 4, 8,
6, 7, 12, 13, 18, 37 | cgr3simp3 26883 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶 − 𝐴) = (𝑋 − 𝐷)) |
39 | 1, 2, 3, 4, 7, 8, 18, 12, 38 | tgcgrcomlr 26841 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝑋)) |
40 | | trgcopyeulem.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐷𝐸𝑌”〉) |
41 | 1, 2, 3, 31, 4, 8,
6, 7, 12, 13, 19, 40 | cgr3simp3 26883 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐶 − 𝐴) = (𝑌 − 𝐷)) |
42 | 1, 2, 3, 4, 7, 8, 19, 12, 41 | tgcgrcomlr 26841 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝑌)) |
43 | 39, 42 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐷 − 𝑋) = (𝐷 − 𝑌)) |
44 | 1, 2, 3, 4, 10, 11, 5, 17, 12, 19 | lmiiso 27158 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 − 𝑌)) |
45 | 1, 3, 5, 4, 12, 13, 16 | tglinerflx1 26994 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐷 ∈ (𝐷𝐿𝐸)) |
46 | 1, 2, 3, 4, 10, 11, 5, 17, 12, 45 | lmicinv 27154 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) = 𝐷) |
47 | 46 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
48 | 43, 44, 47 | 3eqtr2d 2784 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐷 − 𝑋) = (𝐷 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
49 | 48 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 − 𝑋) = (𝐷 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
50 | 1, 2, 3, 31, 4, 8,
6, 7, 12, 13, 18, 37 | cgr3simp2 26882 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝑋)) |
51 | 1, 2, 3, 31, 4, 8,
6, 7, 12, 13, 19, 40 | cgr3simp2 26882 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 − 𝐶) = (𝐸 − 𝑌)) |
52 | 50, 51 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐸 − 𝑋) = (𝐸 − 𝑌)) |
53 | 1, 2, 3, 4, 10, 11, 5, 17, 13, 19 | lmiiso 27158 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 − 𝑌)) |
54 | 1, 3, 5, 4, 12, 13, 16 | tglinerflx2 26995 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐿𝐸)) |
55 | 1, 2, 3, 4, 10, 11, 5, 17, 13, 54 | lmicinv 27154 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) = 𝐸) |
56 | 55 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
57 | 52, 53, 56 | 3eqtr2d 2784 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐸 − 𝑋) = (𝐸 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
58 | 57 | ad2antrr 723 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 − 𝑋) = (𝐸 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
59 | 1, 5, 3, 21, 29, 30, 24, 31, 28, 27, 2, 32, 36, 49, 58 | lncgr 26930 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 − 𝑋) = (𝑡 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
60 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
61 | 1, 2, 3, 5, 20, 21, 24, 25, 27, 28, 59, 60 | ismir 27020 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 = (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
62 | 61 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑋) |
63 | 1, 2, 3, 5, 20, 21, 24, 25, 27, 62 | mircom 27024 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) |
64 | 63 | eqcomd 2744 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋)) |
65 | 10 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺DimTarskiG≥2) |
66 | 1, 2, 3, 21, 65, 28, 27, 20, 24 | ismidb 27139 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋) ↔ (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡)) |
67 | 64, 66 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡) |
68 | 67, 23 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸)) |
69 | | trgcopyeulem.o |
. . . . . . . . 9
⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))} |
70 | | trgcopyeulem.4 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
71 | | trgcopyeulem.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹) |
72 | 1, 3, 5, 4, 17, 18, 69, 14, 71 | hpgcom 27128 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋) |
73 | 1, 3, 5, 4, 17, 19, 69, 14, 70, 18, 72 | hpgtr 27129 |
. . . . . . . 8
⊢ (𝜑 → 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋) |
74 | 1, 3, 5, 69, 4, 17, 19, 14, 70 | hpgne1 27122 |
. . . . . . . . . 10
⊢ (𝜑 → ¬ 𝑌 ∈ (𝐷𝐿𝐸)) |
75 | 1, 2, 3, 5, 4, 10,
17, 69, 11, 19, 74 | lmiopp 27163 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) |
76 | 1, 3, 5, 69, 4, 17, 19, 18, 26, 75 | lnopp2hpgb 27124 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)) |
77 | 73, 76 | mpbird 256 |
. . . . . . 7
⊢ (𝜑 → 𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) |
78 | 1, 2, 3, 69, 18, 26 | islnopp 27100 |
. . . . . . 7
⊢ (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))) |
79 | 77, 78 | mpbid 231 |
. . . . . 6
⊢ (𝜑 → ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))) |
80 | 79 | simprd 496 |
. . . . 5
⊢ (𝜑 → ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
81 | 68, 80 | r19.29a 3218 |
. . . 4
⊢ (𝜑 → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸)) |
82 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝐺 ∈ TarskiG) |
83 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿) |
84 | 1, 2, 3, 69, 5, 17, 4, 18, 26, 77 | oppne3 27104 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) |
85 | 1, 3, 5, 4, 18, 26, 84 | tgelrnln 26991 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿) |
86 | 85 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿) |
87 | 86 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿) |
88 | 84 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) |
89 | 1, 3, 5, 21, 28, 27, 24, 88, 60 | btwnlng1 26980 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
90 | 23, 89 | elind 4128 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))) |
91 | 90 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))) |
92 | 54 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝐸 ∈ (𝐷𝐿𝐸)) |
93 | 1, 3, 5, 4, 18, 26, 84 | tglinerflx1 26994 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
94 | 93 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
95 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝐸 ≠ 𝑡) |
96 | 79 | simplld 765 |
. . . . . . . . . . . 12
⊢ (𝜑 → ¬ 𝑋 ∈ (𝐷𝐿𝐸)) |
97 | 96 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ¬ 𝑋 ∈ (𝐷𝐿𝐸)) |
98 | | nelne2 3042 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝑋 ∈ (𝐷𝐿𝐸)) → 𝑡 ≠ 𝑋) |
99 | 23, 97, 98 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ≠ 𝑋) |
100 | 99 | necomd 2999 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ≠ 𝑡) |
101 | 100 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝑋 ≠ 𝑡) |
102 | 64 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 − (((pInvG‘𝐺)‘𝑡)‘𝑋))) |
103 | 58, 102 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 − 𝑋) = (𝐸 − (((pInvG‘𝐺)‘𝑡)‘𝑋))) |
104 | 103 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → (𝐸 − 𝑋) = (𝐸 − (((pInvG‘𝐺)‘𝑡)‘𝑋))) |
105 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝐸 ∈ 𝑃) |
106 | 24 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝑡 ∈ 𝑃) |
107 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 𝑋 ∈ 𝑃) |
108 | 1, 2, 3, 5, 20, 82, 105, 106, 107 | israg 27058 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → (〈“𝐸𝑡𝑋”〉 ∈ (∟G‘𝐺) ↔ (𝐸 − 𝑋) = (𝐸 − (((pInvG‘𝐺)‘𝑡)‘𝑋)))) |
109 | 104, 108 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → 〈“𝐸𝑡𝑋”〉 ∈ (∟G‘𝐺)) |
110 | 1, 2, 3, 5, 82, 83, 87, 91, 92, 94, 95, 101, 109 | ragperp 27078 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸 ≠ 𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
111 | 21 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝐺 ∈ TarskiG) |
112 | 22 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿) |
113 | 86 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿) |
114 | 90 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))) |
115 | 45 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝐷 ∈ (𝐷𝐿𝐸)) |
116 | 93 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
117 | | simpr 485 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝐷 ≠ 𝑡) |
118 | 100 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝑋 ≠ 𝑡) |
119 | 64 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 − (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 − (((pInvG‘𝐺)‘𝑡)‘𝑋))) |
120 | 49, 119 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 − 𝑋) = (𝐷 − (((pInvG‘𝐺)‘𝑡)‘𝑋))) |
121 | 120 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → (𝐷 − 𝑋) = (𝐷 − (((pInvG‘𝐺)‘𝑡)‘𝑋))) |
122 | 29 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝐷 ∈ 𝑃) |
123 | 24 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝑡 ∈ 𝑃) |
124 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 𝑋 ∈ 𝑃) |
125 | 1, 2, 3, 5, 20, 111, 122, 123, 124 | israg 27058 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → (〈“𝐷𝑡𝑋”〉 ∈ (∟G‘𝐺) ↔ (𝐷 − 𝑋) = (𝐷 − (((pInvG‘𝐺)‘𝑡)‘𝑋)))) |
126 | 121, 125 | mpbird 256 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → 〈“𝐷𝑡𝑋”〉 ∈ (∟G‘𝐺)) |
127 | 1, 2, 3, 5, 111, 112, 113, 114, 115, 116, 117, 118, 126 | ragperp 27078 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷 ≠ 𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
128 | | neneor 3044 |
. . . . . . . 8
⊢ (𝐸 ≠ 𝐷 → (𝐸 ≠ 𝑡 ∨ 𝐷 ≠ 𝑡)) |
129 | 33, 128 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 ≠ 𝑡 ∨ 𝐷 ≠ 𝑡)) |
130 | 110, 127,
129 | mpjaodan 956 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
131 | 130 | orcd 870 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
132 | 131, 80 | r19.29a 3218 |
. . . 4
⊢ (𝜑 → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) |
133 | 1, 2, 3, 4, 10, 11, 5, 17, 18, 26 | islmib 27148 |
. . . 4
⊢ (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) ↔ ((𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))) |
134 | 81, 132, 133 | mpbir2and 710 |
. . 3
⊢ (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋)) |
135 | 134 | eqcomd 2744 |
. 2
⊢ (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) |
136 | 1, 2, 3, 4, 10, 11, 5, 17, 18, 19, 135 | lmieq 27152 |
1
⊢ (𝜑 → 𝑋 = 𝑌) |