MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeulem Structured version   Visualization version   GIF version

Theorem trgcopyeulem 26603
Description: Lemma for trgcopyeu 26604. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
trgcopyeulem.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
trgcopyeulem.x (𝜑𝑋𝑃)
trgcopyeulem.y (𝜑𝑌𝑃)
trgcopyeulem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
trgcopyeulem.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
trgcopyeulem.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
trgcopyeulem.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
trgcopyeulem (𝜑𝑋 = 𝑌)
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐵,𝑎,𝑏,𝑡   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐸,𝑎,𝑏,𝑡   𝐹,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡   𝐾,𝑎   𝑂,𝑎,𝑏,𝑡   𝑋,𝑎,𝑏,𝑡   𝑌,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐾(𝑡,𝑏)

Proof of Theorem trgcopyeulem
StepHypRef Expression
1 trgcopy.p . 2 𝑃 = (Base‘𝐺)
2 trgcopy.m . 2 = (dist‘𝐺)
3 trgcopy.i . 2 𝐼 = (Itv‘𝐺)
4 trgcopy.g . 2 (𝜑𝐺 ∈ TarskiG)
5 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
6 trgcopy.b . . 3 (𝜑𝐵𝑃)
7 trgcopy.c . . 3 (𝜑𝐶𝑃)
8 trgcopy.a . . 3 (𝜑𝐴𝑃)
9 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
101, 5, 3, 4, 6, 7, 8, 9ncoltgdim2 26363 . 2 (𝜑𝐺DimTarskiG≥2)
11 eqid 2801 . 2 ((lInvG‘𝐺)‘(𝐷𝐿𝐸)) = ((lInvG‘𝐺)‘(𝐷𝐿𝐸))
12 trgcopy.d . . 3 (𝜑𝐷𝑃)
13 trgcopy.e . . 3 (𝜑𝐸𝑃)
14 trgcopy.f . . . 4 (𝜑𝐹𝑃)
15 trgcopy.2 . . . 4 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
161, 3, 5, 4, 12, 13, 14, 15ncolne1 26423 . . 3 (𝜑𝐷𝐸)
171, 3, 5, 4, 12, 13, 16tgelrnln 26428 . 2 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
18 trgcopyeulem.x . 2 (𝜑𝑋𝑃)
19 trgcopyeulem.y . 2 (𝜑𝑌𝑃)
20 eqid 2801 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
214ad2antrr 725 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺 ∈ TarskiG)
2217ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
23 simplr 768 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐷𝐿𝐸))
241, 5, 3, 21, 22, 23tglnpt 26347 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑃)
25 eqid 2801 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑡) = ((pInvG‘𝐺)‘𝑡)
261, 2, 3, 4, 10, 11, 5, 17, 19lmicl 26584 . . . . . . . . . 10 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2726ad2antrr 725 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2818ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑃)
2912ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝑃)
3013ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝑃)
31 eqid 2801 . . . . . . . . . . . 12 (cgrG‘𝐺) = (cgrG‘𝐺)
3216ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝐸)
3332necomd 3045 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝐷)
341, 3, 5, 21, 30, 29, 24, 33, 23lncom 26420 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐸𝐿𝐷))
3534orcd 870 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
361, 5, 3, 21, 30, 29, 24, 35colrot1 26357 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 ∈ (𝐷𝐿𝑡) ∨ 𝐷 = 𝑡))
37 trgcopyeulem.1 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
381, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp3 26320 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑋 𝐷))
391, 2, 3, 4, 7, 8, 18, 12, 38tgcgrcomlr 26278 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑋))
40 trgcopyeulem.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
411, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp3 26320 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑌 𝐷))
421, 2, 3, 4, 7, 8, 19, 12, 41tgcgrcomlr 26278 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑌))
4339, 42eqtr3d 2838 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 𝑋) = (𝐷 𝑌))
441, 2, 3, 4, 10, 11, 5, 17, 12, 19lmiiso 26595 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 𝑌))
451, 3, 5, 4, 12, 13, 16tglinerflx1 26431 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐷𝐿𝐸))
461, 2, 3, 4, 10, 11, 5, 17, 12, 45lmicinv 26591 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) = 𝐷)
4746oveq1d 7154 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4843, 44, 473eqtr2d 2842 . . . . . . . . . . . . 13 (𝜑 → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4948ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
501, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp2 26319 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑋))
511, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp2 26319 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑌))
5250, 51eqtr3d 2838 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 𝑋) = (𝐸 𝑌))
531, 2, 3, 4, 10, 11, 5, 17, 13, 19lmiiso 26595 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 𝑌))
541, 3, 5, 4, 12, 13, 16tglinerflx2 26432 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
551, 2, 3, 4, 10, 11, 5, 17, 13, 54lmicinv 26591 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) = 𝐸)
5655oveq1d 7154 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5752, 53, 563eqtr2d 2842 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5857ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
591, 5, 3, 21, 29, 30, 24, 31, 28, 27, 2, 32, 36, 49, 58lncgr 26367 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 𝑋) = (𝑡 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
60 simpr 488 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
611, 2, 3, 5, 20, 21, 24, 25, 27, 28, 59, 60ismir 26457 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 = (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
6261eqcomd 2807 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑋)
631, 2, 3, 5, 20, 21, 24, 25, 27, 62mircom 26461 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
6463eqcomd 2807 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋))
6510ad2antrr 725 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺DimTarskiG≥2)
661, 2, 3, 21, 65, 28, 27, 20, 24ismidb 26576 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋) ↔ (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡))
6764, 66mpbid 235 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡)
6867, 23eqeltrd 2893 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
69 trgcopyeulem.o . . . . . . . . 9 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
70 trgcopyeulem.4 . . . . . . . . 9 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
71 trgcopyeulem.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
721, 3, 5, 4, 17, 18, 69, 14, 71hpgcom 26565 . . . . . . . . 9 (𝜑𝐹((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
731, 3, 5, 4, 17, 19, 69, 14, 70, 18, 72hpgtr 26566 . . . . . . . 8 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
741, 3, 5, 69, 4, 17, 19, 14, 70hpgne1 26559 . . . . . . . . . 10 (𝜑 → ¬ 𝑌 ∈ (𝐷𝐿𝐸))
751, 2, 3, 5, 4, 10, 17, 69, 11, 19, 74lmiopp 26600 . . . . . . . . 9 (𝜑𝑌𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
761, 3, 5, 69, 4, 17, 19, 18, 26, 75lnopp2hpgb 26561 . . . . . . . 8 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋))
7773, 76mpbird 260 . . . . . . 7 (𝜑𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
781, 2, 3, 69, 18, 26islnopp 26537 . . . . . . 7 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
7977, 78mpbid 235 . . . . . 6 (𝜑 → ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
8079simprd 499 . . . . 5 (𝜑 → ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
8168, 80r19.29a 3251 . . . 4 (𝜑 → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
8221adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐺 ∈ TarskiG)
8322adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
841, 2, 3, 69, 5, 17, 4, 18, 26, 77oppne3 26541 . . . . . . . . . . 11 (𝜑𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
851, 3, 5, 4, 18, 26, 84tgelrnln 26428 . . . . . . . . . 10 (𝜑 → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8685ad2antrr 725 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8786adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8884ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
891, 3, 5, 21, 28, 27, 24, 88, 60btwnlng1 26417 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9023, 89elind 4124 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9190adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9254ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸 ∈ (𝐷𝐿𝐸))
931, 3, 5, 4, 18, 26, 84tglinerflx1 26431 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9493ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
95 simpr 488 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑡)
9679simplld 767 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
9796ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
98 nelne2 3087 . . . . . . . . . . 11 ((𝑡 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝑋 ∈ (𝐷𝐿𝐸)) → 𝑡𝑋)
9923, 97, 98syl2anc 587 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑋)
10099necomd 3045 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑡)
101100adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑡)
10264oveq2d 7155 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10358, 102eqtrd 2836 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
104103adantr 484 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10530adantr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑃)
10624adantr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡𝑃)
10728adantr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑃)
1081, 2, 3, 5, 20, 82, 105, 106, 107israg 26495 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
109104, 108mpbird 260 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → ⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1101, 2, 3, 5, 82, 83, 87, 91, 92, 94, 95, 101, 109ragperp 26515 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
11121adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐺 ∈ TarskiG)
11222adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
11386adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
11490adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
11545ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷 ∈ (𝐷𝐿𝐸))
11693ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
117 simpr 488 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑡)
118100adantr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑡)
11964oveq2d 7155 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12049, 119eqtrd 2836 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
121120adantr 484 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12229adantr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑃)
12324adantr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡𝑃)
12428adantr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑃)
1251, 2, 3, 5, 20, 111, 122, 123, 124israg 26495 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
126121, 125mpbird 260 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → ⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1271, 2, 3, 5, 111, 112, 113, 114, 115, 116, 117, 118, 126ragperp 26515 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
128 neneor 3089 . . . . . . . 8 (𝐸𝐷 → (𝐸𝑡𝐷𝑡))
12933, 128syl 17 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸𝑡𝐷𝑡))
130110, 127, 129mpjaodan 956 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
131130orcd 870 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
132131, 80r19.29a 3251 . . . 4 (𝜑 → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
1331, 2, 3, 4, 10, 11, 5, 17, 18, 26islmib 26585 . . . 4 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) ↔ ((𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
13481, 132, 133mpbir2and 712 . . 3 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋))
135134eqcomd 2807 . 2 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
1361, 2, 3, 4, 10, 11, 5, 17, 18, 19, 135lmieq 26589 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844   = wceq 1538  wcel 2112  wne 2990  wrex 3110  cdif 3881  cin 3883   class class class wbr 5033  {copab 5095  ran crn 5524  cfv 6328  (class class class)co 7139  2c2 11684  ⟨“cs3 14199  Basecbs 16479  distcds 16570  TarskiGcstrkg 26228  DimTarskiGcstrkgld 26232  Itvcitv 26234  LineGclng 26235  cgrGccgrg 26308  hlGchlg 26398  pInvGcmir 26450  ∟Gcrag 26491  ⟂Gcperpg 26493  hpGchpg 26555  midGcmid 26570  lInvGclmi 26571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918  df-s1 13945  df-s2 14205  df-s3 14206  df-trkgc 26246  df-trkgb 26247  df-trkgcb 26248  df-trkgld 26250  df-trkg 26251  df-cgrg 26309  df-leg 26381  df-hlg 26399  df-mir 26451  df-rag 26492  df-perpg 26494  df-hpg 26556  df-mid 26572  df-lmi 26573
This theorem is referenced by:  trgcopyeu  26604  acopyeu  26632
  Copyright terms: Public domain W3C validator