MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeulem Structured version   Visualization version   GIF version

Theorem trgcopyeulem 26308
Description: Lemma for trgcopyeu 26309. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
trgcopyeulem.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
trgcopyeulem.x (𝜑𝑋𝑃)
trgcopyeulem.y (𝜑𝑌𝑃)
trgcopyeulem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
trgcopyeulem.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
trgcopyeulem.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
trgcopyeulem.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
trgcopyeulem (𝜑𝑋 = 𝑌)
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐵,𝑎,𝑏,𝑡   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐸,𝑎,𝑏,𝑡   𝐹,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡   𝐾,𝑎   𝑂,𝑎,𝑏,𝑡   𝑋,𝑎,𝑏,𝑡   𝑌,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐾(𝑡,𝑏)

Proof of Theorem trgcopyeulem
StepHypRef Expression
1 trgcopy.p . 2 𝑃 = (Base‘𝐺)
2 trgcopy.m . 2 = (dist‘𝐺)
3 trgcopy.i . 2 𝐼 = (Itv‘𝐺)
4 trgcopy.g . 2 (𝜑𝐺 ∈ TarskiG)
5 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
6 trgcopy.b . . 3 (𝜑𝐵𝑃)
7 trgcopy.c . . 3 (𝜑𝐶𝑃)
8 trgcopy.a . . 3 (𝜑𝐴𝑃)
9 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
101, 5, 3, 4, 6, 7, 8, 9ncoltgdim2 26068 . 2 (𝜑𝐺DimTarskiG≥2)
11 eqid 2771 . 2 ((lInvG‘𝐺)‘(𝐷𝐿𝐸)) = ((lInvG‘𝐺)‘(𝐷𝐿𝐸))
12 trgcopy.d . . 3 (𝜑𝐷𝑃)
13 trgcopy.e . . 3 (𝜑𝐸𝑃)
14 trgcopy.f . . . 4 (𝜑𝐹𝑃)
15 trgcopy.2 . . . 4 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
161, 3, 5, 4, 12, 13, 14, 15ncolne1 26128 . . 3 (𝜑𝐷𝐸)
171, 3, 5, 4, 12, 13, 16tgelrnln 26133 . 2 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
18 trgcopyeulem.x . 2 (𝜑𝑋𝑃)
19 trgcopyeulem.y . 2 (𝜑𝑌𝑃)
20 eqid 2771 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
214ad2antrr 714 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺 ∈ TarskiG)
2217ad2antrr 714 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
23 simplr 757 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐷𝐿𝐸))
241, 5, 3, 21, 22, 23tglnpt 26052 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑃)
25 eqid 2771 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑡) = ((pInvG‘𝐺)‘𝑡)
261, 2, 3, 4, 10, 11, 5, 17, 19lmicl 26289 . . . . . . . . . 10 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2726ad2antrr 714 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2818ad2antrr 714 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑃)
2912ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝑃)
3013ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝑃)
31 eqid 2771 . . . . . . . . . . . 12 (cgrG‘𝐺) = (cgrG‘𝐺)
3216ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝐸)
3332necomd 3015 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝐷)
341, 3, 5, 21, 30, 29, 24, 33, 23lncom 26125 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐸𝐿𝐷))
3534orcd 860 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
361, 5, 3, 21, 30, 29, 24, 35colrot1 26062 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 ∈ (𝐷𝐿𝑡) ∨ 𝐷 = 𝑡))
37 trgcopyeulem.1 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
381, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp3 26025 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑋 𝐷))
391, 2, 3, 4, 7, 8, 18, 12, 38tgcgrcomlr 25983 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑋))
40 trgcopyeulem.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
411, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp3 26025 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑌 𝐷))
421, 2, 3, 4, 7, 8, 19, 12, 41tgcgrcomlr 25983 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑌))
4339, 42eqtr3d 2809 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 𝑋) = (𝐷 𝑌))
441, 2, 3, 4, 10, 11, 5, 17, 12, 19lmiiso 26300 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 𝑌))
451, 3, 5, 4, 12, 13, 16tglinerflx1 26136 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐷𝐿𝐸))
461, 2, 3, 4, 10, 11, 5, 17, 12, 45lmicinv 26296 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) = 𝐷)
4746oveq1d 6989 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4843, 44, 473eqtr2d 2813 . . . . . . . . . . . . 13 (𝜑 → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4948ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
501, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp2 26024 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑋))
511, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp2 26024 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑌))
5250, 51eqtr3d 2809 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 𝑋) = (𝐸 𝑌))
531, 2, 3, 4, 10, 11, 5, 17, 13, 19lmiiso 26300 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 𝑌))
541, 3, 5, 4, 12, 13, 16tglinerflx2 26137 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
551, 2, 3, 4, 10, 11, 5, 17, 13, 54lmicinv 26296 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) = 𝐸)
5655oveq1d 6989 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5752, 53, 563eqtr2d 2813 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5857ad2antrr 714 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
591, 5, 3, 21, 29, 30, 24, 31, 28, 27, 2, 32, 36, 49, 58lncgr 26072 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 𝑋) = (𝑡 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
60 simpr 477 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
611, 2, 3, 5, 20, 21, 24, 25, 27, 28, 59, 60ismir 26162 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 = (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
6261eqcomd 2777 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑋)
631, 2, 3, 5, 20, 21, 24, 25, 27, 62mircom 26166 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
6463eqcomd 2777 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋))
6510ad2antrr 714 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺DimTarskiG≥2)
661, 2, 3, 21, 65, 28, 27, 20, 24ismidb 26281 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋) ↔ (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡))
6764, 66mpbid 224 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡)
6867, 23eqeltrd 2859 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
69 trgcopyeulem.o . . . . . . . . 9 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
70 trgcopyeulem.4 . . . . . . . . 9 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
71 trgcopyeulem.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
721, 3, 5, 4, 17, 18, 69, 14, 71hpgcom 26270 . . . . . . . . 9 (𝜑𝐹((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
731, 3, 5, 4, 17, 19, 69, 14, 70, 18, 72hpgtr 26271 . . . . . . . 8 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
741, 3, 5, 69, 4, 17, 19, 14, 70hpgne1 26264 . . . . . . . . . 10 (𝜑 → ¬ 𝑌 ∈ (𝐷𝐿𝐸))
751, 2, 3, 5, 4, 10, 17, 69, 11, 19, 74lmiopp 26305 . . . . . . . . 9 (𝜑𝑌𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
761, 3, 5, 69, 4, 17, 19, 18, 26, 75lnopp2hpgb 26266 . . . . . . . 8 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋))
7773, 76mpbird 249 . . . . . . 7 (𝜑𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
781, 2, 3, 69, 18, 26islnopp 26242 . . . . . . 7 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
7977, 78mpbid 224 . . . . . 6 (𝜑 → ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
8079simprd 488 . . . . 5 (𝜑 → ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
8168, 80r19.29a 3227 . . . 4 (𝜑 → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
8221adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐺 ∈ TarskiG)
8322adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
841, 2, 3, 69, 5, 17, 4, 18, 26, 77oppne3 26246 . . . . . . . . . . 11 (𝜑𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
851, 3, 5, 4, 18, 26, 84tgelrnln 26133 . . . . . . . . . 10 (𝜑 → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8685ad2antrr 714 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8786adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8884ad2antrr 714 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
891, 3, 5, 21, 28, 27, 24, 88, 60btwnlng1 26122 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9023, 89elind 4053 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9190adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9254ad3antrrr 718 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸 ∈ (𝐷𝐿𝐸))
931, 3, 5, 4, 18, 26, 84tglinerflx1 26136 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9493ad3antrrr 718 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
95 simpr 477 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑡)
9679simplld 756 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
9796ad2antrr 714 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
98 nelne2 3059 . . . . . . . . . . 11 ((𝑡 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝑋 ∈ (𝐷𝐿𝐸)) → 𝑡𝑋)
9923, 97, 98syl2anc 576 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑋)
10099necomd 3015 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑡)
101100adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑡)
10264oveq2d 6990 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10358, 102eqtrd 2807 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
104103adantr 473 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10530adantr 473 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑃)
10624adantr 473 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡𝑃)
10728adantr 473 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑃)
1081, 2, 3, 5, 20, 82, 105, 106, 107israg 26200 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
109104, 108mpbird 249 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → ⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1101, 2, 3, 5, 82, 83, 87, 91, 92, 94, 95, 101, 109ragperp 26220 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
11121adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐺 ∈ TarskiG)
11222adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
11386adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
11490adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
11545ad3antrrr 718 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷 ∈ (𝐷𝐿𝐸))
11693ad3antrrr 718 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
117 simpr 477 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑡)
118100adantr 473 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑡)
11964oveq2d 6990 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12049, 119eqtrd 2807 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
121120adantr 473 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12229adantr 473 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑃)
12324adantr 473 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡𝑃)
12428adantr 473 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑃)
1251, 2, 3, 5, 20, 111, 122, 123, 124israg 26200 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
126121, 125mpbird 249 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → ⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1271, 2, 3, 5, 111, 112, 113, 114, 115, 116, 117, 118, 126ragperp 26220 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
128 neneor 3062 . . . . . . . 8 (𝐸𝐷 → (𝐸𝑡𝐷𝑡))
12933, 128syl 17 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸𝑡𝐷𝑡))
130110, 127, 129mpjaodan 942 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
131130orcd 860 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
132131, 80r19.29a 3227 . . . 4 (𝜑 → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
1331, 2, 3, 4, 10, 11, 5, 17, 18, 26islmib 26290 . . . 4 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) ↔ ((𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
13481, 132, 133mpbir2and 701 . . 3 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋))
135134eqcomd 2777 . 2 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
1361, 2, 3, 4, 10, 11, 5, 17, 18, 19, 135lmieq 26294 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  wo 834   = wceq 1508  wcel 2051  wne 2960  wrex 3082  cdif 3819  cin 3821   class class class wbr 4925  {copab 4987  ran crn 5404  cfv 6185  (class class class)co 6974  2c2 11493  ⟨“cs3 14064  Basecbs 16337  distcds 16428  TarskiGcstrkg 25933  DimTarskiGcstrkgld 25937  Itvcitv 25939  LineGclng 25940  cgrGccgrg 26013  hlGchlg 26103  pInvGcmir 26155  ∟Gcrag 26196  ⟂Gcperpg 26198  hpGchpg 26260  midGcmid 26275  lInvGclmi 26276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-map 8206  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-dju 9122  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-xnn0 11778  df-z 11792  df-uz 12057  df-fz 12707  df-fzo 12848  df-hash 13504  df-word 13671  df-concat 13732  df-s1 13757  df-s2 14070  df-s3 14071  df-trkgc 25951  df-trkgb 25952  df-trkgcb 25953  df-trkgld 25955  df-trkg 25956  df-cgrg 26014  df-leg 26086  df-hlg 26104  df-mir 26156  df-rag 26197  df-perpg 26199  df-hpg 26261  df-mid 26277  df-lmi 26278
This theorem is referenced by:  trgcopyeu  26309  acopyeu  26338
  Copyright terms: Public domain W3C validator