MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trgcopyeulem Structured version   Visualization version   GIF version

Theorem trgcopyeulem 28739
Description: Lemma for trgcopyeu 28740. (Contributed by Thierry Arnoux, 8-Aug-2020.)
Hypotheses
Ref Expression
trgcopy.p 𝑃 = (Base‘𝐺)
trgcopy.m = (dist‘𝐺)
trgcopy.i 𝐼 = (Itv‘𝐺)
trgcopy.l 𝐿 = (LineG‘𝐺)
trgcopy.k 𝐾 = (hlG‘𝐺)
trgcopy.g (𝜑𝐺 ∈ TarskiG)
trgcopy.a (𝜑𝐴𝑃)
trgcopy.b (𝜑𝐵𝑃)
trgcopy.c (𝜑𝐶𝑃)
trgcopy.d (𝜑𝐷𝑃)
trgcopy.e (𝜑𝐸𝑃)
trgcopy.f (𝜑𝐹𝑃)
trgcopy.1 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
trgcopy.2 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
trgcopy.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
trgcopyeulem.o 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
trgcopyeulem.x (𝜑𝑋𝑃)
trgcopyeulem.y (𝜑𝑌𝑃)
trgcopyeulem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
trgcopyeulem.2 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
trgcopyeulem.3 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
trgcopyeulem.4 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
Assertion
Ref Expression
trgcopyeulem (𝜑𝑋 = 𝑌)
Distinct variable groups:   ,𝑎,𝑏,𝑡   𝐴,𝑎,𝑏,𝑡   𝐵,𝑎,𝑏,𝑡   𝐶,𝑎,𝑏,𝑡   𝐷,𝑎,𝑏,𝑡   𝐸,𝑎,𝑏,𝑡   𝐹,𝑎,𝑏,𝑡   𝐺,𝑎,𝑏,𝑡   𝐼,𝑎,𝑏,𝑡   𝐿,𝑎,𝑏,𝑡   𝑃,𝑎,𝑏,𝑡   𝜑,𝑎,𝑏,𝑡   𝐾,𝑎   𝑂,𝑎,𝑏,𝑡   𝑋,𝑎,𝑏,𝑡   𝑌,𝑎,𝑏,𝑡
Allowed substitution hints:   𝐾(𝑡,𝑏)

Proof of Theorem trgcopyeulem
StepHypRef Expression
1 trgcopy.p . 2 𝑃 = (Base‘𝐺)
2 trgcopy.m . 2 = (dist‘𝐺)
3 trgcopy.i . 2 𝐼 = (Itv‘𝐺)
4 trgcopy.g . 2 (𝜑𝐺 ∈ TarskiG)
5 trgcopy.l . . 3 𝐿 = (LineG‘𝐺)
6 trgcopy.b . . 3 (𝜑𝐵𝑃)
7 trgcopy.c . . 3 (𝜑𝐶𝑃)
8 trgcopy.a . . 3 (𝜑𝐴𝑃)
9 trgcopy.1 . . 3 (𝜑 → ¬ (𝐴 ∈ (𝐵𝐿𝐶) ∨ 𝐵 = 𝐶))
101, 5, 3, 4, 6, 7, 8, 9ncoltgdim2 28499 . 2 (𝜑𝐺DimTarskiG≥2)
11 eqid 2730 . 2 ((lInvG‘𝐺)‘(𝐷𝐿𝐸)) = ((lInvG‘𝐺)‘(𝐷𝐿𝐸))
12 trgcopy.d . . 3 (𝜑𝐷𝑃)
13 trgcopy.e . . 3 (𝜑𝐸𝑃)
14 trgcopy.f . . . 4 (𝜑𝐹𝑃)
15 trgcopy.2 . . . 4 (𝜑 → ¬ (𝐷 ∈ (𝐸𝐿𝐹) ∨ 𝐸 = 𝐹))
161, 3, 5, 4, 12, 13, 14, 15ncolne1 28559 . . 3 (𝜑𝐷𝐸)
171, 3, 5, 4, 12, 13, 16tgelrnln 28564 . 2 (𝜑 → (𝐷𝐿𝐸) ∈ ran 𝐿)
18 trgcopyeulem.x . 2 (𝜑𝑋𝑃)
19 trgcopyeulem.y . 2 (𝜑𝑌𝑃)
20 eqid 2730 . . . . . . . . 9 (pInvG‘𝐺) = (pInvG‘𝐺)
214ad2antrr 726 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺 ∈ TarskiG)
2217ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸) ∈ ran 𝐿)
23 simplr 768 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐷𝐿𝐸))
241, 5, 3, 21, 22, 23tglnpt 28483 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑃)
25 eqid 2730 . . . . . . . . 9 ((pInvG‘𝐺)‘𝑡) = ((pInvG‘𝐺)‘𝑡)
261, 2, 3, 4, 10, 11, 5, 17, 19lmicl 28720 . . . . . . . . . 10 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2726ad2antrr 726 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ 𝑃)
2818ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑃)
2912ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝑃)
3013ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝑃)
31 eqid 2730 . . . . . . . . . . . 12 (cgrG‘𝐺) = (cgrG‘𝐺)
3216ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐷𝐸)
3332necomd 2981 . . . . . . . . . . . . . . 15 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐸𝐷)
341, 3, 5, 21, 30, 29, 24, 33, 23lncom 28556 . . . . . . . . . . . . . 14 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝐸𝐿𝐷))
3534orcd 873 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 ∈ (𝐸𝐿𝐷) ∨ 𝐸 = 𝐷))
361, 5, 3, 21, 30, 29, 24, 35colrot1 28493 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 ∈ (𝐷𝐿𝑡) ∨ 𝐷 = 𝑡))
37 trgcopyeulem.1 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑋”⟩)
381, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp3 28456 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑋 𝐷))
391, 2, 3, 4, 7, 8, 18, 12, 38tgcgrcomlr 28414 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑋))
40 trgcopyeulem.2 . . . . . . . . . . . . . . . . 17 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝐷𝐸𝑌”⟩)
411, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp3 28456 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 𝐴) = (𝑌 𝐷))
421, 2, 3, 4, 7, 8, 19, 12, 41tgcgrcomlr 28414 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴 𝐶) = (𝐷 𝑌))
4339, 42eqtr3d 2767 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 𝑋) = (𝐷 𝑌))
441, 2, 3, 4, 10, 11, 5, 17, 12, 19lmiiso 28731 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 𝑌))
451, 3, 5, 4, 12, 13, 16tglinerflx1 28567 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ (𝐷𝐿𝐸))
461, 2, 3, 4, 10, 11, 5, 17, 12, 45lmicinv 28727 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) = 𝐷)
4746oveq1d 7405 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐷) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4843, 44, 473eqtr2d 2771 . . . . . . . . . . . . 13 (𝜑 → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
4948ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
501, 2, 3, 31, 4, 8, 6, 7, 12, 13, 18, 37cgr3simp2 28455 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑋))
511, 2, 3, 31, 4, 8, 6, 7, 12, 13, 19, 40cgr3simp2 28455 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 𝐶) = (𝐸 𝑌))
5250, 51eqtr3d 2767 . . . . . . . . . . . . . 14 (𝜑 → (𝐸 𝑋) = (𝐸 𝑌))
531, 2, 3, 4, 10, 11, 5, 17, 13, 19lmiiso 28731 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 𝑌))
541, 3, 5, 4, 12, 13, 16tglinerflx2 28568 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ (𝐷𝐿𝐸))
551, 2, 3, 4, 10, 11, 5, 17, 13, 54lmicinv 28727 . . . . . . . . . . . . . . 15 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) = 𝐸)
5655oveq1d 7405 . . . . . . . . . . . . . 14 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝐸) (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5752, 53, 563eqtr2d 2771 . . . . . . . . . . . . 13 (𝜑 → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
5857ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
591, 5, 3, 21, 29, 30, 24, 31, 28, 27, 2, 32, 36, 49, 58lncgr 28503 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑡 𝑋) = (𝑡 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
60 simpr 484 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
611, 2, 3, 5, 20, 21, 24, 25, 27, 28, 59, 60ismir 28593 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 = (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
6261eqcomd 2736 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑋)
631, 2, 3, 5, 20, 21, 24, 25, 27, 62mircom 28597 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((pInvG‘𝐺)‘𝑡)‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
6463eqcomd 2736 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋))
6510ad2antrr 726 . . . . . . . 8 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝐺DimTarskiG≥2)
661, 2, 3, 21, 65, 28, 27, 20, 24ismidb 28712 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((pInvG‘𝐺)‘𝑡)‘𝑋) ↔ (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡))
6764, 66mpbid 232 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = 𝑡)
6867, 23eqeltrd 2829 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
69 trgcopyeulem.o . . . . . . . . 9 𝑂 = {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (𝑃 ∖ (𝐷𝐿𝐸)) ∧ 𝑏 ∈ (𝑃 ∖ (𝐷𝐿𝐸))) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑎𝐼𝑏))}
70 trgcopyeulem.4 . . . . . . . . 9 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
71 trgcopyeulem.3 . . . . . . . . . 10 (𝜑𝑋((hpG‘𝐺)‘(𝐷𝐿𝐸))𝐹)
721, 3, 5, 4, 17, 18, 69, 14, 71hpgcom 28701 . . . . . . . . 9 (𝜑𝐹((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
731, 3, 5, 4, 17, 19, 69, 14, 70, 18, 72hpgtr 28702 . . . . . . . 8 (𝜑𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋)
741, 3, 5, 69, 4, 17, 19, 14, 70hpgne1 28695 . . . . . . . . . 10 (𝜑 → ¬ 𝑌 ∈ (𝐷𝐿𝐸))
751, 2, 3, 5, 4, 10, 17, 69, 11, 19, 74lmiopp 28736 . . . . . . . . 9 (𝜑𝑌𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
761, 3, 5, 69, 4, 17, 19, 18, 26, 75lnopp2hpgb 28697 . . . . . . . 8 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ 𝑌((hpG‘𝐺)‘(𝐷𝐿𝐸))𝑋))
7773, 76mpbird 257 . . . . . . 7 (𝜑𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
781, 2, 3, 69, 18, 26islnopp 28673 . . . . . . 7 (𝜑 → (𝑋𝑂(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ↔ ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
7977, 78mpbid 232 . . . . . 6 (𝜑 → ((¬ 𝑋 ∈ (𝐷𝐿𝐸) ∧ ¬ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) ∈ (𝐷𝐿𝐸)) ∧ ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
8079simprd 495 . . . . 5 (𝜑 → ∃𝑡 ∈ (𝐷𝐿𝐸)𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
8168, 80r19.29a 3142 . . . 4 (𝜑 → (𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸))
8221adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐺 ∈ TarskiG)
8322adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
841, 2, 3, 69, 5, 17, 4, 18, 26, 77oppne3 28677 . . . . . . . . . . 11 (𝜑𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
851, 3, 5, 4, 18, 26, 84tgelrnln 28564 . . . . . . . . . 10 (𝜑 → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8685ad2antrr 726 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8786adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
8884ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋 ≠ (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
891, 3, 5, 21, 28, 27, 24, 88, 60btwnlng1 28553 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9023, 89elind 4166 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9190adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
9254ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸 ∈ (𝐷𝐿𝐸))
931, 3, 5, 4, 18, 26, 84tglinerflx1 28567 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
9493ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
95 simpr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑡)
9679simplld 767 . . . . . . . . . . . 12 (𝜑 → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
9796ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ¬ 𝑋 ∈ (𝐷𝐿𝐸))
98 nelne2 3024 . . . . . . . . . . 11 ((𝑡 ∈ (𝐷𝐿𝐸) ∧ ¬ 𝑋 ∈ (𝐷𝐿𝐸)) → 𝑡𝑋)
9923, 97, 98syl2anc 584 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑡𝑋)
10099necomd 2981 . . . . . . . . 9 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → 𝑋𝑡)
101100adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑡)
10264oveq2d 7406 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10358, 102eqtrd 2765 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
104103adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
10530adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝐸𝑃)
10624adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑡𝑃)
10728adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → 𝑋𝑃)
1081, 2, 3, 5, 20, 82, 105, 106, 107israg 28631 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐸 𝑋) = (𝐸 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
109104, 108mpbird 257 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → ⟨“𝐸𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1101, 2, 3, 5, 82, 83, 87, 91, 92, 94, 95, 101, 109ragperp 28651 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐸𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
11121adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐺 ∈ TarskiG)
11222adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸) ∈ ran 𝐿)
11386adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ ran 𝐿)
11490adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡 ∈ ((𝐷𝐿𝐸) ∩ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))))
11545ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷 ∈ (𝐷𝐿𝐸))
11693ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋 ∈ (𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
117 simpr 484 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑡)
118100adantr 480 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑡)
11964oveq2d 7406 . . . . . . . . . . 11 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12049, 119eqtrd 2765 . . . . . . . . . 10 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
121120adantr 480 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋)))
12229adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝐷𝑃)
12324adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑡𝑃)
12428adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → 𝑋𝑃)
1251, 2, 3, 5, 20, 111, 122, 123, 124israg 28631 . . . . . . . . 9 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝑋) = (𝐷 (((pInvG‘𝐺)‘𝑡)‘𝑋))))
126121, 125mpbird 257 . . . . . . . 8 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → ⟨“𝐷𝑡𝑋”⟩ ∈ (∟G‘𝐺))
1271, 2, 3, 5, 111, 112, 113, 114, 115, 116, 117, 118, 126ragperp 28651 . . . . . . 7 ((((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) ∧ 𝐷𝑡) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
128 neneor 3026 . . . . . . . 8 (𝐸𝐷 → (𝐸𝑡𝐷𝑡))
12933, 128syl 17 . . . . . . 7 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐸𝑡𝐷𝑡))
130110, 127, 129mpjaodan 960 . . . . . 6 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → (𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
131130orcd 873 . . . . 5 (((𝜑𝑡 ∈ (𝐷𝐿𝐸)) ∧ 𝑡 ∈ (𝑋𝐼(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))) → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
132131, 80r19.29a 3142 . . . 4 (𝜑 → ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))
1331, 2, 3, 4, 10, 11, 5, 17, 18, 26islmib 28721 . . . 4 (𝜑 → ((((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) ↔ ((𝑋(midG‘𝐺)(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∈ (𝐷𝐿𝐸) ∧ ((𝐷𝐿𝐸)(⟂G‘𝐺)(𝑋𝐿(((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)) ∨ 𝑋 = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌)))))
13481, 132, 133mpbir2and 713 . . 3 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋))
135134eqcomd 2736 . 2 (𝜑 → (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑋) = (((lInvG‘𝐺)‘(𝐷𝐿𝐸))‘𝑌))
1361, 2, 3, 4, 10, 11, 5, 17, 18, 19, 135lmieq 28725 1 (𝜑𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  cin 3916   class class class wbr 5110  {copab 5172  ran crn 5642  cfv 6514  (class class class)co 7390  2c2 12248  ⟨“cs3 14815  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  DimTarskiGcstrkgld 28365  Itvcitv 28367  LineGclng 28368  cgrGccgrg 28444  hlGchlg 28534  pInvGcmir 28586  ∟Gcrag 28627  ⟂Gcperpg 28629  hpGchpg 28691  midGcmid 28706  lInvGclmi 28707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-concat 14543  df-s1 14568  df-s2 14821  df-s3 14822  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkgld 28386  df-trkg 28387  df-cgrg 28445  df-leg 28517  df-hlg 28535  df-mir 28587  df-rag 28628  df-perpg 28630  df-hpg 28692  df-mid 28708  df-lmi 28709
This theorem is referenced by:  trgcopyeu  28740  acopyeu  28768
  Copyright terms: Public domain W3C validator