Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2919 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1861 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 Ⅎwnf 1787 Ⅎwnfc 2886 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-nfc 2888 df-ne 2943 |
This theorem is referenced by: cantnflem1 9377 ac6c4 10168 fproddiv 15599 fprodn0 15617 fproddivf 15625 mreiincl 17222 lss1d 20140 iunconn 22487 restmetu 23632 coeeq2 25308 fedgmullem2 31613 bnj1534 32733 bnj1542 32737 bnj1398 32914 bnj1445 32924 bnj1449 32928 bnj1312 32938 bnj1525 32949 cvmcov 33125 nfwlim 33743 sltval2 33786 finminlem 34434 finxpreclem2 35488 poimirlem25 35729 poimirlem26 35730 poimirlem28 35732 cdleme40m 38408 cdleme40n 38409 dihglblem5 39239 iunconnlem2 42444 eliuniin2 42558 disjf1 42609 disjrnmpt2 42615 disjinfi 42620 allbutfiinf 42850 fsumiunss 43006 idlimc 43057 0ellimcdiv 43080 stoweidlem31 43462 stoweidlem58 43489 fourierdlem31 43569 sge0iunmpt 43846 |
Copyright terms: Public domain | W3C validator |