MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfne Structured version   Visualization version   GIF version

Theorem nfne 3026
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1 𝑥𝐴
nfne.2 𝑥𝐵
Assertion
Ref Expression
nfne 𝑥 𝐴𝐵

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2926 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 nfne.1 . . . 4 𝑥𝐴
3 nfne.2 . . . 4 𝑥𝐵
42, 3nfeq 2905 . . 3 𝑥 𝐴 = 𝐵
54nfn 1857 . 2 𝑥 ¬ 𝐴 = 𝐵
61, 5nfxfr 1853 1 𝑥 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wnf 1783  wnfc 2876  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2721  df-nfc 2878  df-ne 2926
This theorem is referenced by:  cantnflem1  9642  ac6c4  10434  fproddiv  15927  fprodn0  15945  fproddivf  15953  mreiincl  17557  lss1d  20869  iunconn  23315  restmetu  24458  coeeq2  26147  sltval2  27568  fedgmullem2  33626  bnj1534  34843  bnj1542  34847  bnj1398  35024  bnj1445  35034  bnj1449  35038  bnj1312  35048  bnj1525  35059  cvmcov  35250  nfwlim  35810  finminlem  36306  finxpreclem2  37378  poimirlem25  37639  poimirlem26  37640  poimirlem28  37642  cdleme40m  40461  cdleme40n  40462  dihglblem5  41292  iunconnlem2  44924  eliuniin2  45114  disjf1  45177  disjrnmpt2  45182  disjinfi  45186  allbutfiinf  45416  fsumiunss  45573  idlimc  45624  0ellimcdiv  45647  stoweidlem31  46029  stoweidlem58  46056  fourierdlem31  46136  sge0iunmpt  46416
  Copyright terms: Public domain W3C validator