| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfne.1 | ⊢ Ⅎ𝑥𝐴 |
| nfne.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2933 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfeq 2912 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2883 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2727 df-nfc 2885 df-ne 2933 |
| This theorem is referenced by: cantnflem1 9701 ac6c4 10493 fproddiv 15975 fprodn0 15993 fproddivf 16001 mreiincl 17606 lss1d 20918 iunconn 23364 restmetu 24507 coeeq2 26197 sltval2 27618 fedgmullem2 33616 bnj1534 34830 bnj1542 34834 bnj1398 35011 bnj1445 35021 bnj1449 35025 bnj1312 35035 bnj1525 35046 cvmcov 35231 nfwlim 35786 finminlem 36282 finxpreclem2 37354 poimirlem25 37615 poimirlem26 37616 poimirlem28 37618 cdleme40m 40432 cdleme40n 40433 dihglblem5 41263 iunconnlem2 44907 eliuniin2 45092 disjf1 45155 disjrnmpt2 45160 disjinfi 45164 allbutfiinf 45395 fsumiunss 45552 idlimc 45603 0ellimcdiv 45626 stoweidlem31 46008 stoweidlem58 46035 fourierdlem31 46115 sge0iunmpt 46395 |
| Copyright terms: Public domain | W3C validator |