| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfne.1 | ⊢ Ⅎ𝑥𝐴 |
| nfne.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfeq 2906 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2877 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2722 df-nfc 2879 df-ne 2927 |
| This theorem is referenced by: cantnflem1 9649 ac6c4 10441 fproddiv 15934 fprodn0 15952 fproddivf 15960 mreiincl 17564 lss1d 20876 iunconn 23322 restmetu 24465 coeeq2 26154 sltval2 27575 fedgmullem2 33633 bnj1534 34850 bnj1542 34854 bnj1398 35031 bnj1445 35041 bnj1449 35045 bnj1312 35055 bnj1525 35066 cvmcov 35257 nfwlim 35817 finminlem 36313 finxpreclem2 37385 poimirlem25 37646 poimirlem26 37647 poimirlem28 37649 cdleme40m 40468 cdleme40n 40469 dihglblem5 41299 iunconnlem2 44931 eliuniin2 45121 disjf1 45184 disjrnmpt2 45189 disjinfi 45193 allbutfiinf 45423 fsumiunss 45580 idlimc 45631 0ellimcdiv 45654 stoweidlem31 46036 stoweidlem58 46063 fourierdlem31 46143 sge0iunmpt 46423 |
| Copyright terms: Public domain | W3C validator |