MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfne Structured version   Visualization version   GIF version

Theorem nfne 3043
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1 𝑥𝐴
nfne.2 𝑥𝐵
Assertion
Ref Expression
nfne 𝑥 𝐴𝐵

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2942 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 nfne.1 . . . 4 𝑥𝐴
3 nfne.2 . . . 4 𝑥𝐵
42, 3nfeq 2918 . . 3 𝑥 𝐴 = 𝐵
54nfn 1859 . 2 𝑥 ¬ 𝐴 = 𝐵
61, 5nfxfr 1854 1 𝑥 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wnf 1784  wnfc 2885  wne 2941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-cleq 2729  df-nfc 2887  df-ne 2942
This theorem is referenced by:  cantnflem1  9518  ac6c4  10310  fproddiv  15743  fprodn0  15761  fproddivf  15769  mreiincl  17375  lss1d  20297  iunconn  22651  restmetu  23798  coeeq2  25475  sltval2  26876  fedgmullem2  31817  bnj1534  32938  bnj1542  32942  bnj1398  33119  bnj1445  33129  bnj1449  33133  bnj1312  33143  bnj1525  33154  cvmcov  33330  nfwlim  33911  finminlem  34565  finxpreclem2  35617  poimirlem25  35858  poimirlem26  35859  poimirlem28  35861  cdleme40m  38686  cdleme40n  38687  dihglblem5  39517  iunconnlem2  42776  eliuniin2  42891  disjf1  42948  disjrnmpt2  42954  disjinfi  42959  allbutfiinf  43196  fsumiunss  43353  idlimc  43404  0ellimcdiv  43427  stoweidlem31  43809  stoweidlem58  43836  fourierdlem31  43916  sge0iunmpt  44194
  Copyright terms: Public domain W3C validator