| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfne.1 | ⊢ Ⅎ𝑥𝐴 |
| nfne.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2932 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfeq 2911 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 5 | 4 | nfn 1856 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
| 6 | 1, 5 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 Ⅎwnf 1782 Ⅎwnfc 2882 ≠ wne 2931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-cleq 2726 df-nfc 2884 df-ne 2932 |
| This theorem is referenced by: cantnflem1 9695 ac6c4 10487 fproddiv 15964 fprodn0 15982 fproddivf 15990 mreiincl 17593 lss1d 20905 iunconn 23351 restmetu 24494 coeeq2 26184 sltval2 27604 fedgmullem2 33586 bnj1534 34805 bnj1542 34809 bnj1398 34986 bnj1445 34996 bnj1449 35000 bnj1312 35010 bnj1525 35021 cvmcov 35206 nfwlim 35761 finminlem 36257 finxpreclem2 37329 poimirlem25 37590 poimirlem26 37591 poimirlem28 37593 cdleme40m 40407 cdleme40n 40408 dihglblem5 41238 iunconnlem2 44886 eliuniin2 45071 disjf1 45134 disjrnmpt2 45139 disjinfi 45143 allbutfiinf 45375 fsumiunss 45534 idlimc 45585 0ellimcdiv 45608 stoweidlem31 45990 stoweidlem58 46017 fourierdlem31 46097 sge0iunmpt 46377 |
| Copyright terms: Public domain | W3C validator |