MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfne Structured version   Visualization version   GIF version

Theorem nfne 3032
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1 𝑥𝐴
nfne.2 𝑥𝐵
Assertion
Ref Expression
nfne 𝑥 𝐴𝐵

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2932 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 nfne.1 . . . 4 𝑥𝐴
3 nfne.2 . . . 4 𝑥𝐵
42, 3nfeq 2911 . . 3 𝑥 𝐴 = 𝐵
54nfn 1856 . 2 𝑥 ¬ 𝐴 = 𝐵
61, 5nfxfr 1852 1 𝑥 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wnf 1782  wnfc 2882  wne 2931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-cleq 2726  df-nfc 2884  df-ne 2932
This theorem is referenced by:  cantnflem1  9695  ac6c4  10487  fproddiv  15964  fprodn0  15982  fproddivf  15990  mreiincl  17593  lss1d  20905  iunconn  23351  restmetu  24494  coeeq2  26184  sltval2  27604  fedgmullem2  33586  bnj1534  34805  bnj1542  34809  bnj1398  34986  bnj1445  34996  bnj1449  35000  bnj1312  35010  bnj1525  35021  cvmcov  35206  nfwlim  35761  finminlem  36257  finxpreclem2  37329  poimirlem25  37590  poimirlem26  37591  poimirlem28  37593  cdleme40m  40407  cdleme40n  40408  dihglblem5  41238  iunconnlem2  44886  eliuniin2  45071  disjf1  45134  disjrnmpt2  45139  disjinfi  45143  allbutfiinf  45375  fsumiunss  45534  idlimc  45585  0ellimcdiv  45608  stoweidlem31  45990  stoweidlem58  46017  fourierdlem31  46097  sge0iunmpt  46377
  Copyright terms: Public domain W3C validator