![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2987 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2962 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1842 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1838 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1525 Ⅎwnf 1769 Ⅎwnfc 2935 ≠ wne 2986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-cleq 2790 df-nfc 2937 df-ne 2987 |
This theorem is referenced by: cantnflem1 9005 ac6c4 9756 fproddiv 15152 fprodn0 15170 fproddivf 15178 mreiincl 16700 lss1d 19429 iunconn 21724 restmetu 22867 coeeq2 24519 fedgmullem2 30626 bnj1534 31737 bnj1542 31741 bnj1398 31916 bnj1445 31926 bnj1449 31930 bnj1312 31940 bnj1525 31951 cvmcov 32120 nfwlim 32720 sltval2 32774 finminlem 33277 finxpreclem2 34223 poimirlem25 34469 poimirlem26 34470 poimirlem28 34472 cdleme40m 37155 cdleme40n 37156 dihglblem5 37986 iunconnlem2 40829 eliuniin2 40947 suprnmpt 40991 disjf1 41004 disjrnmpt2 41010 disjinfi 41015 allbutfiinf 41257 fsumiunss 41419 idlimc 41470 0ellimcdiv 41493 stoweidlem31 41880 stoweidlem58 41907 fourierdlem31 41987 sge0iunmpt 42264 |
Copyright terms: Public domain | W3C validator |