| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfne.1 | ⊢ Ⅎ𝑥𝐴 |
| nfne.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfeq 2905 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2876 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 df-ne 2926 |
| This theorem is referenced by: cantnflem1 9642 ac6c4 10434 fproddiv 15927 fprodn0 15945 fproddivf 15953 mreiincl 17557 lss1d 20869 iunconn 23315 restmetu 24458 coeeq2 26147 sltval2 27568 fedgmullem2 33626 bnj1534 34843 bnj1542 34847 bnj1398 35024 bnj1445 35034 bnj1449 35038 bnj1312 35048 bnj1525 35059 cvmcov 35250 nfwlim 35810 finminlem 36306 finxpreclem2 37378 poimirlem25 37639 poimirlem26 37640 poimirlem28 37642 cdleme40m 40461 cdleme40n 40462 dihglblem5 41292 iunconnlem2 44924 eliuniin2 45114 disjf1 45177 disjrnmpt2 45182 disjinfi 45186 allbutfiinf 45416 fsumiunss 45573 idlimc 45624 0ellimcdiv 45647 stoweidlem31 46029 stoweidlem58 46056 fourierdlem31 46136 sge0iunmpt 46416 |
| Copyright terms: Public domain | W3C validator |