MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfne Structured version   Visualization version   GIF version

Theorem nfne 3026
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1 𝑥𝐴
nfne.2 𝑥𝐵
Assertion
Ref Expression
nfne 𝑥 𝐴𝐵

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2926 . 2 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 nfne.1 . . . 4 𝑥𝐴
3 nfne.2 . . . 4 𝑥𝐵
42, 3nfeq 2905 . . 3 𝑥 𝐴 = 𝐵
54nfn 1857 . 2 𝑥 ¬ 𝐴 = 𝐵
61, 5nfxfr 1853 1 𝑥 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wnf 1783  wnfc 2876  wne 2925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-cleq 2721  df-nfc 2878  df-ne 2926
This theorem is referenced by:  cantnflem1  9618  ac6c4  10410  fproddiv  15903  fprodn0  15921  fproddivf  15929  mreiincl  17533  lss1d  20901  iunconn  23348  restmetu  24491  coeeq2  26180  sltval2  27601  fedgmullem2  33619  bnj1534  34836  bnj1542  34840  bnj1398  35017  bnj1445  35027  bnj1449  35031  bnj1312  35041  bnj1525  35052  cvmcov  35243  nfwlim  35803  finminlem  36299  finxpreclem2  37371  poimirlem25  37632  poimirlem26  37633  poimirlem28  37635  cdleme40m  40454  cdleme40n  40455  dihglblem5  41285  iunconnlem2  44917  eliuniin2  45107  disjf1  45170  disjrnmpt2  45175  disjinfi  45179  allbutfiinf  45409  fsumiunss  45566  idlimc  45617  0ellimcdiv  45640  stoweidlem31  46022  stoweidlem58  46049  fourierdlem31  46129  sge0iunmpt  46409
  Copyright terms: Public domain W3C validator