Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2944 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2920 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1860 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 Ⅎwnf 1786 Ⅎwnfc 2887 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-cleq 2730 df-nfc 2889 df-ne 2944 |
This theorem is referenced by: cantnflem1 9447 ac6c4 10237 fproddiv 15671 fprodn0 15689 fproddivf 15697 mreiincl 17305 lss1d 20225 iunconn 22579 restmetu 23726 coeeq2 25403 fedgmullem2 31711 bnj1534 32833 bnj1542 32837 bnj1398 33014 bnj1445 33024 bnj1449 33028 bnj1312 33038 bnj1525 33049 cvmcov 33225 nfwlim 33816 sltval2 33859 finminlem 34507 finxpreclem2 35561 poimirlem25 35802 poimirlem26 35803 poimirlem28 35805 cdleme40m 38481 cdleme40n 38482 dihglblem5 39312 iunconnlem2 42555 eliuniin2 42669 disjf1 42720 disjrnmpt2 42726 disjinfi 42731 allbutfiinf 42960 fsumiunss 43116 idlimc 43167 0ellimcdiv 43190 stoweidlem31 43572 stoweidlem58 43599 fourierdlem31 43679 sge0iunmpt 43956 |
Copyright terms: Public domain | W3C validator |