| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfne.1 | ⊢ Ⅎ𝑥𝐴 |
| nfne.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfeq 2905 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2876 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 df-ne 2926 |
| This theorem is referenced by: cantnflem1 9618 ac6c4 10410 fproddiv 15903 fprodn0 15921 fproddivf 15929 mreiincl 17533 lss1d 20901 iunconn 23348 restmetu 24491 coeeq2 26180 sltval2 27601 fedgmullem2 33619 bnj1534 34836 bnj1542 34840 bnj1398 35017 bnj1445 35027 bnj1449 35031 bnj1312 35041 bnj1525 35052 cvmcov 35243 nfwlim 35803 finminlem 36299 finxpreclem2 37371 poimirlem25 37632 poimirlem26 37633 poimirlem28 37635 cdleme40m 40454 cdleme40n 40455 dihglblem5 41285 iunconnlem2 44917 eliuniin2 45107 disjf1 45170 disjrnmpt2 45175 disjinfi 45179 allbutfiinf 45409 fsumiunss 45566 idlimc 45617 0ellimcdiv 45640 stoweidlem31 46022 stoweidlem58 46049 fourierdlem31 46129 sge0iunmpt 46409 |
| Copyright terms: Public domain | W3C validator |