![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2922 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1856 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 Ⅎwnf 1781 Ⅎwnfc 2893 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-nfc 2895 df-ne 2947 |
This theorem is referenced by: cantnflem1 9758 ac6c4 10550 fproddiv 16009 fprodn0 16027 fproddivf 16035 mreiincl 17654 lss1d 20984 iunconn 23457 restmetu 24604 coeeq2 26301 sltval2 27719 fedgmullem2 33643 bnj1534 34829 bnj1542 34833 bnj1398 35010 bnj1445 35020 bnj1449 35024 bnj1312 35034 bnj1525 35045 cvmcov 35231 nfwlim 35786 finminlem 36284 finxpreclem2 37356 poimirlem25 37605 poimirlem26 37606 poimirlem28 37608 cdleme40m 40424 cdleme40n 40425 dihglblem5 41255 iunconnlem2 44906 eliuniin2 45022 disjf1 45090 disjrnmpt2 45095 disjinfi 45099 allbutfiinf 45335 fsumiunss 45496 idlimc 45547 0ellimcdiv 45570 stoweidlem31 45952 stoweidlem58 45979 fourierdlem31 46059 sge0iunmpt 46339 |
Copyright terms: Public domain | W3C validator |