| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfne.1 | ⊢ Ⅎ𝑥𝐴 |
| nfne.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfeq 2908 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 5 | 4 | nfn 1858 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
| 6 | 1, 5 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 Ⅎwnf 1784 Ⅎwnfc 2879 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-nfc 2881 df-ne 2929 |
| This theorem is referenced by: cantnflem1 9579 ac6c4 10372 fproddiv 15868 fprodn0 15886 fproddivf 15894 mreiincl 17498 lss1d 20896 iunconn 23343 restmetu 24485 coeeq2 26174 sltval2 27595 fedgmullem2 33643 bnj1534 34865 bnj1542 34869 bnj1398 35046 bnj1445 35056 bnj1449 35060 bnj1312 35070 bnj1525 35081 cvmcov 35307 nfwlim 35864 finminlem 36362 finxpreclem2 37434 poimirlem25 37695 poimirlem26 37696 poimirlem28 37698 cdleme40m 40576 cdleme40n 40577 dihglblem5 41407 iunconnlem2 45037 eliuniin2 45227 disjf1 45290 disjrnmpt2 45295 disjinfi 45299 allbutfiinf 45528 fsumiunss 45685 idlimc 45736 0ellimcdiv 45757 stoweidlem31 46139 stoweidlem58 46166 fourierdlem31 46246 sge0iunmpt 46526 |
| Copyright terms: Public domain | W3C validator |