| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfne.1 | ⊢ Ⅎ𝑥𝐴 |
| nfne.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 4 | 2, 3 | nfeq 2905 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2876 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-nfc 2878 df-ne 2926 |
| This theorem is referenced by: cantnflem1 9585 ac6c4 10375 fproddiv 15868 fprodn0 15886 fproddivf 15894 mreiincl 17498 lss1d 20866 iunconn 23313 restmetu 24456 coeeq2 26145 sltval2 27566 fedgmullem2 33603 bnj1534 34826 bnj1542 34830 bnj1398 35007 bnj1445 35017 bnj1449 35021 bnj1312 35031 bnj1525 35042 cvmcov 35246 nfwlim 35806 finminlem 36302 finxpreclem2 37374 poimirlem25 37635 poimirlem26 37636 poimirlem28 37638 cdleme40m 40456 cdleme40n 40457 dihglblem5 41287 iunconnlem2 44918 eliuniin2 45108 disjf1 45171 disjrnmpt2 45176 disjinfi 45180 allbutfiinf 45409 fsumiunss 45566 idlimc 45617 0ellimcdiv 45640 stoweidlem31 46022 stoweidlem58 46049 fourierdlem31 46129 sge0iunmpt 46409 |
| Copyright terms: Public domain | W3C validator |