Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2942 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2918 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1859 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 Ⅎwnf 1784 Ⅎwnfc 2885 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-cleq 2729 df-nfc 2887 df-ne 2942 |
This theorem is referenced by: cantnflem1 9518 ac6c4 10310 fproddiv 15743 fprodn0 15761 fproddivf 15769 mreiincl 17375 lss1d 20297 iunconn 22651 restmetu 23798 coeeq2 25475 sltval2 26876 fedgmullem2 31817 bnj1534 32938 bnj1542 32942 bnj1398 33119 bnj1445 33129 bnj1449 33133 bnj1312 33143 bnj1525 33154 cvmcov 33330 nfwlim 33911 finminlem 34565 finxpreclem2 35617 poimirlem25 35858 poimirlem26 35859 poimirlem28 35861 cdleme40m 38686 cdleme40n 38687 dihglblem5 39517 iunconnlem2 42776 eliuniin2 42891 disjf1 42948 disjrnmpt2 42954 disjinfi 42959 allbutfiinf 43196 fsumiunss 43353 idlimc 43404 0ellimcdiv 43427 stoweidlem31 43809 stoweidlem58 43836 fourierdlem31 43916 sge0iunmpt 44194 |
Copyright terms: Public domain | W3C validator |