Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2917 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1865 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1860 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 Ⅎwnf 1791 Ⅎwnfc 2884 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-cleq 2729 df-nfc 2886 df-ne 2941 |
This theorem is referenced by: cantnflem1 9304 ac6c4 10095 fproddiv 15523 fprodn0 15541 fproddivf 15549 mreiincl 17099 lss1d 20000 iunconn 22325 restmetu 23468 coeeq2 25136 fedgmullem2 31425 bnj1534 32546 bnj1542 32550 bnj1398 32727 bnj1445 32737 bnj1449 32741 bnj1312 32751 bnj1525 32762 cvmcov 32938 nfwlim 33553 sltval2 33596 finminlem 34244 finxpreclem2 35298 poimirlem25 35539 poimirlem26 35540 poimirlem28 35542 cdleme40m 38218 cdleme40n 38219 dihglblem5 39049 iunconnlem2 42228 eliuniin2 42342 disjf1 42393 disjrnmpt2 42399 disjinfi 42404 allbutfiinf 42633 fsumiunss 42791 idlimc 42842 0ellimcdiv 42865 stoweidlem31 43247 stoweidlem58 43274 fourierdlem31 43354 sge0iunmpt 43631 |
Copyright terms: Public domain | W3C validator |