![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2916 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1860 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 Ⅎwnf 1785 Ⅎwnfc 2883 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-cleq 2724 df-nfc 2885 df-ne 2941 |
This theorem is referenced by: cantnflem1 9683 ac6c4 10475 fproddiv 15904 fprodn0 15922 fproddivf 15930 mreiincl 17539 lss1d 20573 iunconn 22931 restmetu 24078 coeeq2 25755 sltval2 27156 fedgmullem2 32710 bnj1534 33859 bnj1542 33863 bnj1398 34040 bnj1445 34050 bnj1449 34054 bnj1312 34064 bnj1525 34075 cvmcov 34249 nfwlim 34789 finminlem 35198 finxpreclem2 36266 poimirlem25 36508 poimirlem26 36509 poimirlem28 36511 cdleme40m 39333 cdleme40n 39334 dihglblem5 40164 iunconnlem2 43686 eliuniin2 43799 disjf1 43870 disjrnmpt2 43876 disjinfi 43881 allbutfiinf 44120 fsumiunss 44281 idlimc 44332 0ellimcdiv 44355 stoweidlem31 44737 stoweidlem58 44764 fourierdlem31 44844 sge0iunmpt 45124 |
Copyright terms: Public domain | W3C validator |