![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2942 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2917 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1861 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 Ⅎwnf 1786 Ⅎwnfc 2884 ≠ wne 2941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-cleq 2725 df-nfc 2886 df-ne 2942 |
This theorem is referenced by: cantnflem1 9684 ac6c4 10476 fproddiv 15905 fprodn0 15923 fproddivf 15931 mreiincl 17540 lss1d 20574 iunconn 22932 restmetu 24079 coeeq2 25756 sltval2 27159 fedgmullem2 32715 bnj1534 33864 bnj1542 33868 bnj1398 34045 bnj1445 34055 bnj1449 34059 bnj1312 34069 bnj1525 34080 cvmcov 34254 nfwlim 34794 finminlem 35203 finxpreclem2 36271 poimirlem25 36513 poimirlem26 36514 poimirlem28 36516 cdleme40m 39338 cdleme40n 39339 dihglblem5 40169 iunconnlem2 43696 eliuniin2 43809 disjf1 43880 disjrnmpt2 43886 disjinfi 43891 allbutfiinf 44130 fsumiunss 44291 idlimc 44342 0ellimcdiv 44365 stoweidlem31 44747 stoweidlem58 44774 fourierdlem31 44854 sge0iunmpt 45134 |
Copyright terms: Public domain | W3C validator |