![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfne | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfne.1 | ⊢ Ⅎ𝑥𝐴 |
nfne.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfne | ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2938 | . 2 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | nfne.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfne.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
4 | 2, 3 | nfeq 2916 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
5 | 4 | nfn 1854 | . 2 ⊢ Ⅎ𝑥 ¬ 𝐴 = 𝐵 |
6 | 1, 5 | nfxfr 1849 | 1 ⊢ Ⅎ𝑥 𝐴 ≠ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1536 Ⅎwnf 1779 Ⅎwnfc 2887 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-cleq 2726 df-nfc 2889 df-ne 2938 |
This theorem is referenced by: cantnflem1 9726 ac6c4 10518 fproddiv 15993 fprodn0 16011 fproddivf 16019 mreiincl 17640 lss1d 20978 iunconn 23451 restmetu 24598 coeeq2 26295 sltval2 27715 fedgmullem2 33657 bnj1534 34845 bnj1542 34849 bnj1398 35026 bnj1445 35036 bnj1449 35040 bnj1312 35050 bnj1525 35061 cvmcov 35247 nfwlim 35803 finminlem 36300 finxpreclem2 37372 poimirlem25 37631 poimirlem26 37632 poimirlem28 37634 cdleme40m 40449 cdleme40n 40450 dihglblem5 41280 iunconnlem2 44932 eliuniin2 45059 disjf1 45125 disjrnmpt2 45130 disjinfi 45134 allbutfiinf 45369 fsumiunss 45530 idlimc 45581 0ellimcdiv 45604 stoweidlem31 45986 stoweidlem58 46013 fourierdlem31 46093 sge0iunmpt 46373 |
Copyright terms: Public domain | W3C validator |