|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfcr | Structured version Visualization version GIF version | ||
| Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2176 but use ax-8 2109, df-clel 2815, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.) | 
| Ref | Expression | 
|---|---|
| nfcr | ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nfc 2891 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
| 2 | eleq1w 2823 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 3 | 2 | nfbidv 1921 | . . 3 ⊢ (𝑧 = 𝑦 → (Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴)) | 
| 4 | 3 | spvv 1995 | . 2 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | 
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2889 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-clel 2815 df-nfc 2891 | 
| This theorem is referenced by: nfcri 2896 nfcrd 2898 abidnf 3707 csbtt 3915 csbnestgfw 4421 csbnestgf 4426 | 
| Copyright terms: Public domain | W3C validator |