| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcr | Structured version Visualization version GIF version | ||
| Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2178 but use ax-8 2111, df-clel 2810, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.) |
| Ref | Expression |
|---|---|
| nfcr | ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2886 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴) | |
| 2 | eleq1w 2818 | . . . 4 ⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 3 | 2 | nfbidv 1922 | . . 3 ⊢ (𝑧 = 𝑦 → (Ⅎ𝑥 𝑧 ∈ 𝐴 ↔ Ⅎ𝑥 𝑦 ∈ 𝐴)) |
| 4 | 3 | spvv 1988 | . 2 ⊢ (∀𝑧Ⅎ𝑥 𝑧 ∈ 𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2810 df-nfc 2886 |
| This theorem is referenced by: nfcri 2891 nfcrd 2893 abidnf 3690 csbtt 3896 csbnestgfw 4402 csbnestgf 4407 |
| Copyright terms: Public domain | W3C validator |