MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcr Structured version   Visualization version   GIF version

Theorem nfcr 2898
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2178 but use ax-8 2110, df-clel 2819, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.)
Assertion
Ref Expression
nfcr (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2895 . 2 (𝑥𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
2 eleq1w 2827 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
32nfbidv 1921 . . 3 (𝑧 = 𝑦 → (Ⅎ𝑥 𝑧𝐴 ↔ Ⅎ𝑥 𝑦𝐴))
43spvv 1996 . 2 (∀𝑧𝑥 𝑧𝐴 → Ⅎ𝑥 𝑦𝐴)
51, 4sylbi 217 1 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1781  wcel 2108  wnfc 2893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782  df-clel 2819  df-nfc 2895
This theorem is referenced by:  nfcri  2900  nfcrd  2902  abidnf  3724  csbtt  3938  csbnestgfw  4445  csbnestgf  4450
  Copyright terms: Public domain W3C validator