MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcr Structured version   Visualization version   GIF version

Theorem nfcr 2889
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) Drop ax-12 2178 but use ax-8 2111, df-clel 2810, and avoid a DV condition on 𝑦, 𝐴. (Revised by SN, 3-Jun-2024.)
Assertion
Ref Expression
nfcr (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem nfcr
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2886 . 2 (𝑥𝐴 ↔ ∀𝑧𝑥 𝑧𝐴)
2 eleq1w 2818 . . . 4 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
32nfbidv 1922 . . 3 (𝑧 = 𝑦 → (Ⅎ𝑥 𝑧𝐴 ↔ Ⅎ𝑥 𝑦𝐴))
43spvv 1988 . 2 (∀𝑧𝑥 𝑧𝐴 → Ⅎ𝑥 𝑦𝐴)
51, 4sylbi 217 1 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wnf 1783  wcel 2109  wnfc 2884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-clel 2810  df-nfc 2886
This theorem is referenced by:  nfcri  2891  nfcrd  2893  abidnf  3690  csbtt  3896  csbnestgfw  4402  csbnestgf  4407
  Copyright terms: Public domain W3C validator